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Background. Early, accurate predictions of the onset of influenza season enable targeted implementation of
control efforts. Our objective was to develop a tool to assist public health practitioners, researchers, and clinicians
in defining the community-level onset of seasonal influenza epidemics.

Methods. Using recent surveillance data on virologically confirmed infections of influenza, we developed the
Above Local Elevated Respiratory Illness Threshold (ALERT) algorithm, a method to identify the period of highest
seasonal influenza activity. We used data from 2 large hospitals that serve Baltimore, Maryland and Denver, Colo-
rado, and the surrounding geographic areas. The data used by ALERT are routinely collected surveillance data: week-
ly case counts of laboratory-confirmed influenza Avirus. The main outcome is the percentage of prospective seasonal
influenza cases identified by the ALERT algorithm.

Results. When ALERT thresholds designed to capture 90% of all cases were applied prospectively to the 2011–2012
and 2012–2013 influenza seasons in both hospitals, 71%–91% of all reported cases fell within the ALERT period.

Conclusions. The ALERT algorithm provides a simple, robust, and accurate metric for determining the onset of
elevated influenza activity at the community level. This new algorithm provides valuable information that can impact
infection prevention recommendations, public health practice, and healthcare delivery.
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Influenza, a leading cause of death in the United States
[1], causes approximately 40 000 deaths each year, more
than motor vehicle accidents [2]. Despite the infections
and hospitalizations triggered by influenza annually [3–
5], the ability to predict the timing of these outbreaks
remains elusive. Public health practitioners and clini-
cians lack a reliable, simple method for determining

the onset of a period of elevated influenza incidence
in a community. Early, accurate predictions that influ-
enza transmission is rising would enable a proactive and
fast response to increased transmission and outbreaks.

As one example of how these predictions may be
used, many hospitals establish a time period of en-
hanced precautions for healthcare workers, family
members, and visitors during the peak winter influenza
season [6]. Karanfil et al implemented a similar strategy
to identify an influx of infectious children with respira-
tory illness and decreased nosocomial transmission by
almost 50% [7]. The Centers for Disease Control and
Prevention (CDC) and the American Academy of Pedi-
atrics recommend a number of strategies to be used to
control influenza during periods of increased risk, in-
cluding minimizing elective visits of individuals with
suspected influenza and setting up triage stations [8,
9]. Identification of periods of increased influenza inci-
dence could also help target screening for influenza
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antiviral use. However, little guidance is available for facilities to
identify periods of increased influenza incidence.

In recent years, researchers have attempted to predict the
course of seasonal influenza epidemics [10–15]. Some introduce
important methodological advances in disease forecasting. Yet,
facilities face multiple challenges in implementing these meth-
ods to define a period of enhanced precautions. Some methods
have shown promise for influenza prediction but require exten-
sive methodological training to implement [15].Another prom-
inent example, Google Flu Trends, a publicly available and
easily accessible tool, can provide timely insight into overall
trends of cases in a given region [10, 16]. However, Google
Flu Trends has shown poor performance in estimating the bur-
den of influenza [17], correlates better with influenza-like illness
than with laboratory-confirmed influenza [18], cannot accom-
modate data from healthcare settings, and is considered a sup-
plementary rather than authoritative source for influenza
surveillance [19–21].

There has been a need, therefore, for a translational system
that uses surveillance data from a particular setting to inform
a simple rule to identify periods of high influenza incidence
and guide the initiation of enhanced precautions. By identifying
outbreaks early enough to implement public health measures,
many potential cases could be prevented. Ideally, such a tool
is both sensitive and specific in identifying increasing activity.
The costs of activating too late are clear: preventable morbidity
and mortality. On the other hand, there are real costs to inter-
vening too early, leading to waste of resources and, potentially,
increased community member fatigue.

In the context of a large-scale multisite clinical trial, the
Respiratory Protection Effectiveness Clinical Trial (ResPECT),
we developed the Above Local Elevated Respiratory Illness
Threshold (ALERT) algorithm, a method to trigger the study
intervention period so that it overlapped with the period of
highest seasonal influenza activity [1, 6, 22]. This simple,
easy-to-implement, and data-driven algorithm can help public
health practitioners, researchers, and clinicians define the onset
of seasonal influenza epidemics in a community, such as a city
or a hospital, that systematically collects surveillance data on
influenza.

METHODS

Settings
The Johns Hopkins Hospital (JHH) is a 900-bed tertiary care
center in Baltimore, Maryland, with a 200-bed children’s hospi-
tal. During the period for which we have data, surveillance for
respiratory viruses was a mix of active surveillance (for a limited
time in pediatric units) and passive surveillance, as previously
described [7, 23]. Children’s Hospital of Colorado (CHCO) is
a 414-bed hospital serving Denver, Colorado, and surrounding

areas. A passive surveillance system is in place at CHCO, where
children with respiratory symptoms are tested for common re-
spiratory viruses [24]. In both centers, testing included culture,
antigen testing, and polymerase chain reaction.

Data Sources
We obtained weekly case counts of laboratory-confirmed influ-
enza A virus from surveillance systems at both institutions be-
tween 2001 through 2013. We excluded data from the summer
of 2009, due to anomalous H1N1 disease transmission associat-
ed with the pandemic.

The ALERT Algorithm
The ALERT algorithm works by defining an “ALERT period”—
a window of time in a given influenza season when elevated
incidence is expected. In brief, historical data from the same
surveillance system are used to establish a number of cases or
threshold (eg, 5 cases). When the observed number of cases
in a given week is greater than or equal to the chosen threshold,
the ALERT period begins. In a given season, real-time case data
determine the start of the ALERT period.

However, choosing the right threshold poses a challenge. To
guide the user to an evidence-based decision, the ALERT algo-
rithm summarizes data from previous years as if each of several
thresholds had been applied. For each threshold considered, the
ALERT algorithm calculates and reports a set of metrics across
all years of historical data. A complete list of these metrics is
provided in Table 1.

Given these summary metrics for different thresholds, the
user may choose the threshold that fits their needs. This thresh-
old may then be applied to future surveillance data in real time.
In the applications shown below, we chose the largest thresholds
that had captured at least 90% of cases in half of the previous
influenza seasons.

The ALERT algorithm calculations may be implemented by
using a Web applet [25], the ALERT package for the R statistical
programming language [26, 27], or an Excel spreadsheet

Table 1. ALERT Algorithm Metrics

The median ALERT period duration.

The percentage of all influenza cases in an entire season contained
within the ALERT period (median, minimum, maximum).

The fraction of seasons in which the ALERT period contained the
peak week.

The fraction of seasons in which the ALERT period contained the
peak week ± k weeks (where k is specified by the user and
defaults to 2 weeks).

The mean number of weeks included in the ALERT period with
counts less than the threshold.

The mean difference between, for each season, the duration of the
ALERT period and the duration of the shortest period needed to
capture P percent of cases for that season.

Abbreviation: ALERT, Above Local Elevated Respiratory Illness Threshold.
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provided as a supplement. The spreadsheet provides sufficient
calculations to use the ALERT algorithm, but computes a subset
of the metrics that the web applet and the R package provide.
Detailed instructions on how to use the ALERT algorithm are
found in the Supplementary Data.

Data analysis for this project was approved by the institution-
al review boards at the University of Massachusetts, Johns Hop-
kins University, University of Colorado, and the CDC.

Validation
To estimate the performance of the ALERT algorithm in pro-
spective use, we performed validation by leaving 1 year out of
the training data set, fitting the model, and assessing the fit to
the held-out data. We performed this “leave-one-season-out”
cross-validation for each year, in turn (Supplementary Data).

RESULTS

Using reported influenza A cases from both hospitals between
August 2001 and August 2011 (Figure 1), we prospectively ap-
plied the ALERT algorithm to compute historical performance
metrics for a range of possible thresholds. Table 2 presents re-
formatted output from the ALERT R package that shows met-
rics summarizing the performance for multiple possible
thresholds.

For each location, we chose the highest threshold that had
captured at least 90% of cases ≥5 times in the past 10 years.

For CHCO, this resulted in a threshold of 4 cases per week.
For JHH, this led to a threshold of 6 cases.

The ALERT thresholds were applied to the 2011–2012 and
2012–2013 influenza seasons in both hospitals. Figure 2 depicts
the timeline of reported cases in the 2012–2013 season. At JHH,
71% and 91% of all reported cases fell in the ALERT period in
the 2 seasons, respectively. At CHCO, the ALERT period cap-
tured 77% and 89% of all influenza cases during the 2 seasons.

To determine the robustness of the ALERT algorithm, we
cross-validated our metrics for our decision rule (“highest thresh-
old capturing >90% at least half the time”) and others, by calcu-
lating the “prospective” performance by leaving 1 season of data
out at a time. The historical performance metrics were similar to
the prospective performance metrics (Supplementary Table 2),
demonstrating that the simple historical calculations may be suf-
ficient for estimating prospective performance.

DISCUSSION

We have developed a simple strategy to prospectively determine
the start and end to a period of elevated influenza incidence in a
community. We demonstrated the utility, flexibility, and robust-
ness of the ALERT algorithm, which can serve as a valuable tool
for communities, schools, hospitals, and other institutions look-
ing for a method to objectively define a period when, for exam-
ple, enhanced patient contact precautions, empiric therapy, or
other prevention measures should be implemented. Accurate
and robust thresholds could aid in preventing morbidity and

Figure 1. Historical influenza surveillance data from Johns Hopkins Hospital and Children’s Hospital Colorado.
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mortality while also reducing costs associated with excessive
precautions.

The ALERT algorithm can be easily operationalized. It is not
meant to provide detailed predictions of week-to-week incident
counts. In recent years, some models have made large strides
predicting influenza [10, 11, 13, 14]. However, we are not
aware of any open-source, publicly available tool for defining
the influenza season that (1) is currently in use by public health
practitioners or (2) can be utilized by someone who does not
have substantial graduate-level training in a quantitative, statis-
tical, or computational science. The ALERT algorithm may
prove to be especially useful for entities that need to define a
programmatic “elevated respiratory illness season” (eg, a health
system, hospital, or a clinical trial). While the ALERT algorithm
could also be used in nonclinical settings (such as schools or
other community milieus), we have not provided a validation
of its performance in settings without laboratory-confirmed
cases. Furthermore, in these situations it would be especially
important to understand the correspondence between uncon-
firmed case counts and laboratory-confirmed cases.

Our results suggest that the ALERT algorithm performs well
at predicting the beginning and end of a seasonal period of

increased influenza incidence. However, we expect variation
in the results when applying this algorithm. Indeed, we see
with the results from JHH that in 1 year, 91% of cases were cap-
tured, whereas in the other year 71% of cases were captured. In
both years the same threshold was used. The lower-than-expect-
ed number resulted from an influenza season that was unlike
others in the dataset (only 1 other season in our data had a
lower seasonal total). However, in future years of implementa-
tion, these data could be utilized as historical data and therefore
incorporated into the threshold calculations.

A strength of the ALERT algorithm is that its results are tai-
lored to a specific location. Without involvement of a third
party, laboratory-confirmed cases from a facility can be used in
the algorithm. In comparison, a system such as Google Flu Trends
may also provide useful information for hospital administrators,
but ultimately it only provides noisy proxy measures of influenza
incidence in a particular setting [19–21]. There is nothing pre-
venting the ALERT algorithm from being used with data from
a larger community (eg, city- or state-level surveillance data) or
with other pathogens that follow seasonal trends (eg, respiratory
syncytial virus, norovirus), although we have not evaluated its per-
formance in these settings. It could also provide guidance to

Table 2. Summary of ALERT Performance Across Different Thresholds for Johns Hopkins Hospital and Children’s Hospital of Colorado

Site Threshold
Median
Duration

Cases Captured, %
Peaks

Captured
Mean Weeks

Below Threshold
Mean Duration
DifferenceMedian Minimum Maximum % % ±2

CHCO 1 19 98.9 72.6 99.4 100 90 2.3 7.1

2 15.5 97.3 69.9 98.3 100 90 1.2 3.5
3 13 93.9 68.9 97.8 100 90 1.2 1.3

4 12.5 91.9 68.9 96.6 100 70 1.3 0.6

5 12 89.9 68.9 96.1 100 70 1.1 0
6 11.5 89.9 68.9 96.1 100 70 1.3 −0.5
7 9.5 84.1 60.7 96.1 100 60 1.4 −1.6
8 8.5 81.9 60.7 96.1 100 50 1.6 −2.6
9 8.5 80.7 60.7 96.1 100 50 2 −2.8

JHH 1 18 96.9 0 99.8 70 70 3.7 3.7

2 18 97.4 61.3 99.4 90 90 2.9 5.1
3 15.5 95.6 58 98.7 90 90 1.8 1.8

4 14.5 94 57.3 98.7 90 80 2 0.8

5 13 91.8 57.3 96.3 90 80 2.2 −0.3
6 12.5 90.3 57.3 96.2 90 80 2.6 −0.9
7 12 86.4 47.7 94.9 80 80 2.7 −1.4
8 11 82.6 47.7 94.9 80 80 3 −2.1
9 10.5 82.6 0 94.9 80 60 2.2 −2.44

10 9 76.8 0 94.9 70 60 2.2 −3.11

See Table 1 for a complete description of all the metrics. The “Peaks Captured” columns provide the percentage of seasons in which the ALERT period contained
the peak of the flu season (the “%” column) and the peak of the flu season ±2 weeks (the “% ±2” column). The “Mean Duration Difference” column displays the
average difference in duration between the ALERT period and the shortest number of consecutive weeks needed to capture 90% of cases across all seasons.

Abbreviations: ALERT, Above Local Elevated Respiratory Illness Threshold; CHCO, Children’s Hospital of Colorado; JHH, Johns Hopkins Hospital.
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municipal public health authorities about when to implement be-
havioral messaging campaigns to a population.

Picking an ALERT threshold is a task that will depend on the
goals of the user. For example, one institution might put a high
cost on having ALERT periods that last for >12 weeks. Another
might want to capture 95% (or only 75%) of the cases. Each of
these specifications might lead to a different way to evaluate the
ALERT algorithm output. However, because the ALERT algo-
rithm presents a series of options, it makes it easy for the
users to apply their particular priorities. As seen in Table 2,
lower thresholds have longer durations and a larger percentages
of cases captured. If long durations are not cost-prohibitive,
then having the threshold be more sensitive (ie, the threshold
is a lower number) may be desired, although this should be
weighed against the increased likelihood of an early false alarm.

We have used only influenza A case data in the work present-
ed here because the explicit goal in the ResPECT study (our mo-
tivating example) was to maximize capture of influenza A.
However, influenza A and B case data could be combined to
compute a combined ALERT threshold.

Ultimately, the power of the ALERT algorithm lies in its sim-
plicity, flexibility, and generalizability. However, some techno-
logical extensions to the algorithm as it stands now could
enhance its utility and empower public health and medical

practitioners. As those of us in the public health community,
both in and out of healthcare, struggle with planning and man-
aging annual viral epidemics, we must develop tools that will
allow us to respond nimbly yet reliably. The ALERT algorithm
is an additional tool that does not require sophisticated model-
ing and is accessible to the public health community. As with all
these efforts, additional research and refinement will enhance
our ability to be ready for such epidemics.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online
(http://cid.oxfordjournals.org). Supplementary materials consist of data
provided by the author that are published to benefit the reader. The posted
materials are not copyedited. The contents of all supplementary data are the
sole responsibility of the authors. Questions or messages regarding errors
should be addressed to the author.
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Figure 2. Examples of real-time implementation of the Above Local Elevated Respiratory Illness Threshold (ALERT) algorithm, using the 2012–2013 data
from Johns Hopkins Hospital and Children’s Hospital Colorado. The shaded region indicates the ALERT period.
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