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ABSTRACT
Statistical prediction models inform decision-making processes in many real-world settings. Prior to using
predictions in practice, onemust rigorously test and validate candidatemodels to ensure that the proposed
predictions have sufficient accuracy to be used in practice. In this article, we present a framework for eval-
uating time series predictions, which emphasizes computational simplicity and an intuitive interpretation
using the relative mean absolute error metric. For a single time series, this metric enables comparisons of
candidate model predictions against naïve reference models, a method that can provide useful and stan-
dardized performance benchmarks. Additionally, in applications with multiple time series, this framework
facilitates comparisons of one ormoremodels’predictive performance across different sets of data.We illus-
trate the use of thismetric with a case study comparing predictions of dengue hemorrhagic fever incidence
in two provinces of Thailand. This example demonstrates the utility and interpretability of the relativemean
absolute error metric in practice, and underscores the practical advantages of using relative performance
metrics when evaluating predictions.

1. Introduction

Statistical predictionmodels play a critical role in helping people
plan for the future. While the merit of evaluating predictions
is widely appreciated and understood, methods implemented to
evaluate predictions vary in practice.

Many statistical prediction models have a goal of predicting
a single quantitative outcome, for example, probability of 5-year
cancer survival, or the number of wins of a sports team in a
given season. Statistical models designed to predict the trajec-
tory of a time series face added dimensions of complexity. For
each observable unit of data (e.g., a time series observed up to
a specific time), we might ask such models to predict not just
one value, but a sequence of values. Additionally, if a robust and
generalizable model is sought, the model must predict not just
one time series effectively, but many.

These new dimensions quickly add complexity to the ques-
tion of how to evaluate time series prediction models. If you
are interested in evaluating predictions made atN separate time
points, each at up toM time steps into the future, for L different
time series, you need to make N · M · L distinct, if correlated,
predictions.

Existing research has worked to identify the pros and cons
of different methods for evaluating the accuracy of time series
predictions. One trend in the literature highlights advantages
of using relative absolute error metrics (e.g., the relative mean
absolute error or the mean absolute scaled error) instead
of squared error metrics to reduce the impact of outlying
observations and to increase interpretability (Armstrong and
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Collopy 1992; Hyndman and Koehler 2006). In this context,
several methods have been proposed to facilitate evaluation of
predictions of seasonal data (see, e.g., the “naïve2” method in
Makridakis and Hibon 2000), although these methods do not
appear to have been widely adopted. Additionally, the measure
called “forecast skill,” which relies on a relative mean squared
error calculation, has been widely used for several decades
in the field of weather forecasting (Murphy 1988). Another
thread of work advocates for the use of proper scoring rules
for probabilistic forecasts, where the observation is evaluated
against the predicted distribution (Gneiting and Raftery 2007;
Czado, Gneiting, and Held 2009; Held and Paul 2012). These
methods, while having a strong theoretical foundation, are less
directly comparable or interpretable and require a full predictive
distribution.

In this article, we present a framework for multi-step time
series prediction model evaluation that emphasizes computa-
tional simplicity and an intuitive interpretation to facilitate com-
parisons of model performance across different time series.
Specifically, we discuss the “relative mean absolute error” met-
ric and show its utility in predicting infectious disease incidence.
The relative mean absolute error (or relative MAE) is defined as
the average of the absolute values of the prediction errors from
one model, divided by the average of the absolute values of the
prediction errors from a second model (Hyndman and Koehler
2006).

A strength of the relative MAE metric that we find particu-
larly compelling for use in practice is how it enables standardized
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comparisons of candidate models with reference models. This
encourages honest evaluation (i.e., a model could have very low
error, but a simplermodel may have similarly low error) and can
help identify the strengths andweaknesses of predictionmodels.

Generally speaking, we conceive of reference models as
being able to create reasonable, if naïve, predictions by ana-
lysts without extensive formal quantitative or statistical train-
ing. Although, we note that in practice any fitted model, simple
or complex, could be used as a comparative reference. In many
fields of research or application, there may be existing standard
and accepted models that would be suitable as a standard refer-
ence model.

For models predicting disease incidence—the example pre-
sented in this article—there is not a standard, accepted method-
ology for creating and evaluating predictions. In part, this
reflects the wide range of scientific and planning goals in these
prediction efforts. Having an accepted set of prediction accu-
racy metrics would enable comparisons across different studies
and would be a valuable contribution to the field. Appropriate
reference models for predicting disease incidence could be as
simple as an overall measure of central tendency (e.g., mean or
median) or, for diseases that follow a seasonal pattern, an histor-
ical monthly average. For models predicting the timing of dif-
ferent features of an outbreak (duration, peak, onset, etc.), refer-
ence models could be based on historical trends or trends from
other nearby locations.

In Section 2,we describe a framework for facilitating compar-
isons of predictions for time series data. In Section 3, we present
a detailed evaluation of prediction models using a dataset with
incidence of dengue fever in Thailand.

2. A Generalizable Metric for Evaluating Time Series
PredictionModels

We focus our discussion on evaluating the accuracy of time
series predictions. Specifically, we are interested in summariz-
ing a model’s error for each observed value. Predicting other
features of a time series may also be desirable: for example, pre-
dicting the timing of a peak, the cumulative counts, or the per-
centage of predictions that fall within a given percentage of the
true value, to name a few. The methods defined below may be
adapted for these types of metrics, although the current work
focuses on implementing these methods in the context of pre-
dicting the value of unobserved observations.

We consider data, y1, . . . , yT from a time series broken
into continuous blocks, or sets of sequential times, labeled k =
1, . . . ,K. We are interested in comparing the performance of
multiple models for the specific block k∗. In a prediction con-
text, block k∗ might represent data unavailable at the time of fit-
ting. Assume that we fit a suite ofmodels to data excluding block
k∗ and each of these models can be used to generate predictions
for any given time t . Let μ̂A

t,h be the (out-of-sample) predicted
outcome for time t from model A, made at time t − h. In other
words, the prediction horizon, or the number of time steps for-
ward this prediction was made, is defined as h.

2.1. The RelativeMean Absolute Error

For a particular block of observations, the mean absolute error
for model A at prediction horizon h is defined as MAEA,h =

1
Nk∗

∑
t∈k∗ |yt − μ̂A

t,h|, where Nk∗ is the number of observations
in block k∗. Squared error metrics are commonly used in statis-
ticalmodel evaluation butwe focus here on absolute errors as the
basis for evaluating predictions, due to two distinct features of
the mean absolute error metric. First, the MAE provides a very
easily interpretable metric: the average error across all predic-
tions. Interpretability is a significant advantage when working
with collaborators who are eager to understand and interpret
the evaluations of the prediction models. Second, squared error
metrics are sensitive to outlier prediction errors (Armstrong and
Collopy 1992; Hyndman and Koehler 2006). It is known that
the median minimizes expected loss when the loss function is
the absolute value. This implies that the choice of a prediction
model based on mean absolute error is not as likely to be influ-
enced by a small number of large prediction errors compared to
using the squared error.

We define the relative mean absolute error between models
A and B at horizon h as

relMAEA,B,h = MAEA,h

MAEB,h
. (1)

This is an extension of the metric proposed by Hyndman
and Koehler (2006) to account for multi-step predictions, or
different prediction horizons (Hyndman and Koehler 2006).
Additionally, Hyndman and Koehler specifically recommended
a special form of the relative MAE, that they named the mean
absolute scaled error (MASE) for use of evaluating predic-
tions across multiple time series with different scales (Hyndman
and Koehler 2006). They defined the MASE as (Hyndman and
Koehler 2006):

MASE =
∑T

t=1 |yt − μ̂t |/T∑T
t=2 |yt − yt−1|/(T − 1)

. (2)

Heuristically, this represents the ratio of the average absolute
value of the residual from the prediction model (the numera-
tor) and the average absolute value of the residual from a naïve
”reference” model. The MASE is equivalent to the relative MAE
with model B taken as a simple stationary autoregressive lag-1
(AR-1) model where the predicted value of yt , or μ̂t,h, is sim-
ply yt−1 for all values of h. However, the MASE is defined with
respect to a fixed reference model that becomes meaningless
when predictions are evaluated for long time horizons, particu-
larly in periodic systems. The relativeMAE avoids some of these
shortcomings.

2.2. Properties of the RelativeMAE

The relative MAE has several desirable properties. First, the
interpretation of the relative MAE for a given dataset does not
depend on the scale of the data. Second, the relative MAE has
an intuitive interpretation. Since the relative MAE is a ratio, a
value near 1 indicates that the magnitude of the two errors is
approximately equal whereas a value of 2 indicates that themag-
nitude of prediction errors for the candidate model is twice that
of prediction errors from the referencemodel. Third, in contrast
with other relative error metrics that calculate relative errors for
each observation, the relative MAE has a summary statistic of
baseline model errors in the denominator. For example, the
median relative absolute error defined byHyndman andKoehler
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(2006) takes the median of yt−μA
t

yt−μB
t
values. In a situation where

residuals of each model are Gaussian, the distribution of
these relative errors is Cauchy and therefore has undefined
variance (Hyndman and Koehler 2006). By using a summary of
baseline model residuals in the denominator, the relative MAE
is therefore a more stable relative error metric.

Fourth, as defined above, the relative MAE easily accommo-
dates settings with long prediction horizons, or when predic-
tions are made many steps ahead into the future. When predic-
tions are desired far into the future, the reference model for the
original MASE will not evaluate the predictions in a meaningful
way because it only considers one-step-ahead prediction errors.
Therefore, the flexibility of the reference model definition in the
relative MAE and of the extension to multiple prediction hori-
zons, makes this a more useful and relevant metric in evaluating
multi-step predictions of time series data. In Section 3, we sys-
tematically explore the performance of the relativeMAE using a
time series application that requires predictions atmultiple steps
forward into the future.

Finally, we also observe that the relative MAE lends itself
to comparisons between any two models, not necessarily just a
reference and a set of candidate prediction models. For exam-
ple, a simple but important property of the relative MAE is
that

relMAEA,B,h = relMAEA,C,h

relMAEB,C,h
(3)

indicating that as long as a common reference model is used in
two model comparisons (e.g., A vs. C and B vs. C), the relative
MAE can be computed between the two models that were not
explicitly compared (e.g., A vs. B).

2.3. Using Scaled Observations with RelativeMAE

Since data from predictions may be skewed, we discuss briefly
the impact of scaling the y and μ̂ inputs before the calculations
are made. (Note: in this section we suppress the prediction hori-
zon notation for simplicity.) The choice of scaling functions for
the MAE calculation affects the interpretation of both the MAE
and the relative MAE. Simply plugging in the data transforma-
tions used in model estimation (i.e., using | log y − logμ| in the
MAE) leads to arbitrary implicit loss functions in the model
evaluation. This choice should instead be made based on an
implicit or explicit loss function and it leads to a generalized
MAE defined as

MAE = 1
T

T∑
t=1

| f (yt ) − f (μ̂t )|, (4)

where the function f (·) is some function that transforms both
the predicted and observed values.

This article so far considers all errors on the original scale
of the data where f is the identity function. The loss function
implied by this choice is one that emphasizes absolute differ-
ences. It implies that errors of a given magnitude are of equal
importance whether the time series observations are near zero
or near a large value—cost must be constant regardless of the
scale.

An alternative cost function might emphasize relative error
compared to a practically or scientifically meaningful reference
point. In this case, the cost of an error would decrease with dis-
tance from the reference point. For example, a $5000 error in the
predicted value of a $10,000 stock portfolio might be a disaster
whereas the same $5000 error in amillion dollar portfolio would
not be meaningful.

For an implicit relative cost function with count data, we
suggest calculations of the MAE on the log-scale. To do this
for count data—or for other data with a meaningful base-
line value—we define f in the MAE calculations as f (x) =
log(x − b+ 1) where b is the baseline. For count data, where
b = 0, the modified the calculations of the mean absolute error
are

MAE = 1
T

T∑
t=1

| ln(yt + 1) − ln(μ̂t + 1)|

= 1
T

T∑
t=1

∣∣∣∣ln
(
yt + 1
μ̂t + 1

)∣∣∣∣ .

With this MAE calculation, if either yt+1
μ̂t+1 = C or yt+1

μ̂t+1 = 1
C ,

then the mean absolute error for that observation will be the
same, no matter what yt or μt are. For example, this means
that (yt + 1, μt + 1) = (100, 110) has the same contribution to
the MAE as (yt + 1, μt + 1) = (10, 11) or (yt + 1, μt + 1) =
(11, 10), or any (yt + 1, μt + 1) such that yt+1

μt+1 = 1.1 or μt+1
yt+1 =

1.1. Whether this is appropriate depends on the application-
specific implicit loss function.

3. Case Study: Predicting Infectious Disease Incidence

3.1. PredictionModels for Dengue Hemorrhagic Fever in
Thailand

The spread of infectious disease is a dynamic process driven
by many biological and social factors. While our knowl-
edge of these biological mechanisms (e.g., infectiousness,
pathogen-on-pathogen, and pathogen-environment interac-
tions) and social/behavioral patterns (e.g., networks of social
contacts and travel) has grown significantly in recent decades,
predicting infectious disease patterns remains a challenging
task.

We reviewed a small, nonrandom sample of peer-reviewed
publications that focused on predicting infectious disease out-
breaks. This small sample of recent efforts reveal a variety of
approaches used for comparing predictions to reference mod-
els. In short, comparing new predictions to predictions from
reference models does not yet appear to be standard practice
in the infectious disease prediction literature. Shaman et al.
describe a model used to prospectively predict the peak of sea-
sonal influenza outbreaks in the U.S. (Shaman and Karspeck
2012; Shaman et al. 2013). Predictions of the peak timing of
the outbreak were often accurate to within 1 week. As a ref-
erence comparison, they used a model that chose resampled
historical peaks, and their method outperformed this reference
model, with increasingly better relative performance as the flu
season progressed. In forecasting outbreaks of dengue fever,
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in the Phillipines, Buczak et al. (2012, 2014) followed a rig-
orous train/validate/test evaluation protocol, but they did not
compare their results to a reference prediction model (Buczak
et al. 2012, 2014). Hii et al. (2012) attempted to predict dengue
outbreaks in Singapore. Their model predicted weekly inci-
dence and their final model had very close correlation with the
actual data. The authors made no referencemodel comparisons,
and among many models fit to the data, featured the results
from a singlemodel that retrospectively showed good predictive
performance.

Dengue is amosquito-borne virus that causes fever, rash, and
in severe cases, internal bleeding and organ failure. Around 2.5
billion individuals on the planet live in regions where dengue is
endemic (World Health Organization 2015). Dengue is carried
by mosquitoes that thrive in hot and rainy weather. Therefore,
inmany regions where dengue circulates it exhibits a strong sea-
sonal pattern (Johansson, Cummings, andGlass 2009; Campbell
et al. 2013).

From the Thailand Ministry of Public Health surveillance
system, we obtained incidence case reports of dengue hem-
orrhagic fever (a severe form of dengue) for each of the 72
provinces in Thailand from January 1, 1968, to December 31,
2010. Data were aggregated and/or disaggregated (depending
on the reporting scale of the raw data) to biweekly intervals.
Biweeks represent 2-week intervals, and are based on consis-
tently defined 14- or 15-day intervals of time within each year.
For the purposes of this prediction exercise, we focused onmak-
ing predictions for just two provinces, Bangkok andChiangMai,
although data from other provinces were considered as possible
covariates in the predictionmodels (see details below). The 2010
census estimates for population in those two provinces were
8,249,117 and 1,708,564 for Bangkok and Chiang Mai, respec-
tively (National Statistical Office of Thailand 2011). The total
number of reported cases per province over the 43 years was
185,927 (Bangkok) and 35,938 (ChiangMai).We show the com-
plete time series in Figure 1.

We implemented relative MAE comparisons using three dif-
ferent reference models and a candidate Poisson regression
model for dengue hemorrhagic fever in the Thai provinces of
Bangkok and Chiang Mai.

... PoissonModel Using Data from Correlated Provinces
We define the number of cases with onset at time t in province
i as Yt,i. Below we adopt the convention of referring to Yt,i as
the unobserved random variable that is being modeled and yt,i
as observed values that may be used as covariates in the model.
The model assumes that

Yt,i ∼ Poisson
(
λt,i · [yt−1,i + 1]

)
, (5)

where the lag-1 term yt−1,i is treated as an offset in this
model. This formulation assumes that the model for the
expected number of cases at time t can be represented by mul-
tiplying the number of cases observed at the prior time-step
(yt−1,i) by a “reproductive rate” of cases (λt,i). The explicit model
below for λt,i facilitates an intuitive interpretation: if λt,i < 1
then the number of cases is expected to decrease and if λt,i > 1
then the number of cases is expected to increase.

We explicitly modeled the expected number of cases as a
generalized additive model (i.e., a generalized linear model
estimated by penalized maximum likelihood) (Hastie and
Tibshirani 1990)

log
(
λt,i · [yt−1,i + 1]

) = fi(t ) +
∑
j∈Ci

α j log
yt−1, j + 1
yt−2, j + 1

+ log
(
yt−1,i + 1

)
, (6)

where fi(t ) is assumed to be a province-specific cyclical cubic
spline and Ci is the set of the three most correlated provinces
with province i (possibly including province i itself) at a one
biweek lag across the entire dataset. With λt,i as a function of
the lag-1 and lag-2 terms, we have adapted the structure of an
ARIMA(0,1,0) model, using a difference at 1-lag on the log-
scale. This captures the slope of transmission intensity across
several different locations. We note that this model is one spe-
cific parameterization of a general class of ARIMA-style models
that consider different numbers of correlated provinces (i.e., not
just 3) and different numbers of lag-times as predictors of the
current incidence in province i at time t . The goal of this mod-
eling exercise is to demonstrate the utility of the relative MAE
metric in evaluating predictions from these and other similar
time series modeling examples.

The autoregressive terms in the model for λt,i approximate
the reproductive rate for province j at time t − 1, and are
designed to capture the slope of recent incidence in the corre-
lated provinces. The addition of the value 1 in the numerator
and denominator ensures that the quantities are defined when
zero case counts are observed. This method of adjusting for zero
counts has been discussed at length, with the interpretation of
an “immigration rate” added to each observation (Zeger and
Qaqish 1988).

... Autoregressive Lag  (AR-) Model
The first reference model was a simple AR-1 model used in the
definition of themean absolute scaled error, described in Section
2.1. When making an h-step ahead prediction for time t using
data up to time t − h, the predicted value was μ̂t,h = yt−h. Note
that this meant that if we were generating a prediction for 13
biweeks (half a year) into the future, the predicted value was the
most recently observed value. We observe that for the AR-1 ref-
erence model, the predicted value for yt changes depending on
when the prediction is made. For example, if a one-step-ahead
prediction is made for time t ′ at time t ′ − 1, the predicted value
for theAR-1 referencemodelwould be μ̂t ′,1 = yt ′−1. A two-step-
ahead prediction for the same time point would yield a predicted
value of μ̂t ′,2 = yt ′−2.

... Seasonal MediansModel
The second reference model predicted a median seasonal value,
so μ̂t = median(ySt ). In this model, the median is calculated
across all values of t that fall in the set St , which contains all
times in the training data with the same time-of-year as t . For
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Figure . Reported cases of dengue hemorrhagic fever for Bangkok and Chiang Mai between  and .

example, if the time unit is months and t is defined in calen-
dar years with fractional months, then St = {t∗ : t∗ mod 12 =
t mod 12}. The seasonal reference model is time-invariant: the
predictions for a particular time t ′ are the same no matter when
the prediction occurs.

... Overall MedianModel
The third reference model predicted an overall median value,
so μ̂t = median(yt ) where the median is calculated across all
times in the training data. This overall median reference model
is time-invariant: the predictions for time t ′ are the samenomat-
ter when the prediction occurs.

3.2. Model Training and Validation

We implemented a leave-one-year-out cross-validation proce-
dure to create out-of-sample predictions for the mean absolute
error (MAE) calculations. For all predictions, data from 1968
through 1999 was included in the training dataset. For each
year from 2000 to 2009, a single full calendar year of case data
was left out in turn from the training dataset and the model
was fit to the remaining case data. This ensured that all pre-
dictions were made based on the same amount of training data
(42 years of case data). For every biweek in the year that was
left out from the training dataset, we made a set of h step-
ahead predictions, where h ranged from 1 biweek to 13 biweeks
(about 6 months). To construct an h step-ahead prediction for
biweek t , we assumed case data up to biweek t − h were com-
plete. We then sequentially predicted case counts for the follow-
ing h biweeks, up through time t . The resulting predicted case
counts (μ̂t,h) were then compared to the final, observed case
count yt in computing the MAE. Figure 3 shows the MAE cal-
culated on the predictions from the 10 years of out-of-sample
cross-validation.

These models were fit to the data using the mgcv package for
the R statistical programming language (Wood 2011).

3.3. Results fromModel Comparisons Give Insight into
Time Series Predictions

We evaluated model performance using relative MAE. Based on
our previous work and our knowledge on this topic, we expected
that the candidate Poisson model presented above should beat
an average prediction model for the seasonal dengue incidence
data. For some (if not most) provinces, we expected it to pro-
vide short- and long-term predictions that would be better than
just guessing the seasonal mean. For short-term predictions,
we expected the model to do better in many cases than a sim-
ple auto-regressive model. These kinds of knowledge and state-
ments about our model informed our choices of reference mod-
els to compare with our candidate model.

Predictions of dengue fever incidence in Bangkok showed
mixed results at different time scales. A sample of predictions
for time points in 2005 is shown in Figure 2. This plot provides a
snapshot of how each of the four models performed at one spe-
cific time point. Summaries of the predictions across all years
are shown in Figure 3. This plot provides an overall evaluation
of how the models performed across all time points.

The errors for predictions from the AR-1 reference model in
both provinces monotonically increased as the predicted time
point moved further into the future. For Bangkok, the mean
absolute error for the AR-1 model was 42.9 cases predicting 1
biweek ahead, and 169.5 cases predicting 6months (13 biweeks)
ahead. For Chiang Mai, the mean absolute errors for the AR-1
model were 7.8 cases and 44.2 cases for predicting 2 weeks and
6 months ahead, respectively.

Since the seasonal and overallmedian predicted values donot
depend on recently observed values, they always make the same
prediction for a given time point. This results in the prediction
errors being constant for a specific observation across predic-
tion horizons. In Bangkok, the simple seasonal model produced
predictions that were on average 51% further from the observed
value than amodel that predicted themedian observed value for
every observation (MAEseasonal

MAEmedian
= 1.51). In ChiangMai, this pattern
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Figure . Example of cases and prediction errors for Bangkok for a single time point. This figure shows the predictions made for  to  biweeks into the future at biweek
 in . This is merely a sample of the predictions made, as predictions like these were made for each biweek in  through . Black bars indicate the number of
dengue hemorrhagic fever cases observed when predictions were made. Gray bars indicate cases that were subsequently observed. The four lines represent predictions
from the four models: seasonal medians (circles), AR- (triangles), overall median (squares), and our candidate Poisson model (crosses).

Figure . Mean absolute error (MAE) and relative mean absolute error (relative MAE) scores for Bangkok (left column) and Chiang Mai (right column) based on  years of
cross-validated predictions. These metrics show the errors calculated not just for  (as in Figure , but for all cross-validated years (–). The top two subfigures
show the mean absolute error for each model. Errors are shown for the candidate Poisson model (crosses), historical medians model (circles), AR- model (triangles), and
overall median model (squares). The bottom two subfigures show the relative MAE values comparing the candidate Poisson regression model to the seasonal median,
overall median, and AR- reference models.
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was reversed, as the seasonalmodel had predictions that were on
average 24% closer to the observed value (MAEseasonal

MAEmedian
= 0.76). This

is likely reflective of the stronger seasonal patterns of dengue in
Chiang Mai, visible in Figure 1.

The Poisson model in each province had nearly equivalent
performance to the AR-1 model predicting 1 biweek ahead
(MAEPoisson,1

MAEAR1,1
= 0.99 for Bangkok, MAEPoisson,1

MAEAR1,1
= 0.97 for Chiang

Mai). The Poisson models showed much less relative error than
the AR-1 model when predicting 6 months ahead (MAEPoisson,13

MAEAR1,13
=

0.76 for Bangkok, MAEPoisson,13
MAEAR1,13

= 0.49 for Chiang Mai).
In Bangkok, across all the years studied, we observed that our

Poisson model consistently outperformed both the AR-1 and
seasonal median reference model, as shown by relative MAE
scores below 1 for both reference model comparisons at all pre-
diction steps ahead (see Figure 3). However, at longer prediction
horizons (6 biweeks and above, for Bangkok) simply predict-
ing an overall median provided more accuracy than any of the
models considered. Predicting 4 biweeks out, the Poissonmodel
achieved its best relative performance compared to all models,
with predictions at least 8% closer to the truth on average than
any other model. In ChiangMai, the Poissonmodel made better
predictions than every model only for the first 3 biweeks, after
which the seasonal model made better predictions. This anal-
ysis shows that while in both locations our candidate Poisson
models provided marginal improvement in predicting dengue
in the medium-term (1–3 months), these models had equiva-
lent or worse performance than other reference models at short
and longer prediction horizons.

4. Discussion

We have shown that using the relative mean absolute error
framework described above to compare prediction models can
have several important advantages. First, using metrics that do
not benchmark performance against a reference model (such
as an autoregressive model, or the average of recent observa-
tions) can lead to overstating the added value of predictions,
even when acceptedmethods for evaluation are used. For exam-
ple, if a candidate predictionmodel has very low cross-validated
mean squared error that is in general a good thing. But if a sim-
ple autoregressive model can achieve the same score, then the
candidate model may not have much value. Second, compar-
isons against different types of reference models can help iden-
tify the strengths and weaknesses of prediction models. Third,
as shown in our case study, using thismetric also facilitates com-
parisons of similar modeling techniques between two different
time series. This property of the relative MAE makes it particu-
larly conducive to comparisons designed to evaluate generaliz-
ability of a givenmodeling approach. Finally, these comparisons
can demonstrate the value of simple modeling efforts, leading to
improved predictions at a lower cost. Thismay be especially true
if the methods or data used for complex predictions are time-
and/or resource-intensive.

In our infectious disease application (see Section 3), we
observed similar overall patterns of errors and model compar-
isons for all models but the Poisson when comparing relative
MAE values calculated using on the log-scale and on the orig-
inal data scale. We observed that calculating the MAE on the

log-scale reduced the relative error of the Poisson model dis-
proportionately among the four models considered. (Data not
shown.) This may reflect the fact that the model was optimized
and estimated on the log-scale. This further underscores the
importance of understanding the context in which the pre-
dictions are being made, and choosing a scaling method that
reflects the loss functions used by decision makers.

Evaluating model predictions against different reference
models can provide valuable information about model perfor-
mance, especially at different time-scales. Comparing the mean
absolute error for differentmodels can tell us whichmodelmade
better predictions. For example, we saw that reference models
based on recent observations served as good benchmarks for
othermodels whenmaking short-term predictions.Whenmak-
ing longer-term predictions, models that accounted for seasonal
trends or longer-term moving averages did not always improve
our models’ predictive ability.

We see several concrete benefits of using the absolute error
instead of the squared error (a more traditional choice in statis-
tical error evaluation) as the basis for these comparisons. First,
as others have observed, the absolute error is less prone to being
influenced by several outlying points or observations. Second,
we find the interpretability of the relative mean absolute error
to be particularly compelling, especially in a context where the
results need to be explained to a nonquantitative audience. For
example, the relativeMAE allows us to say that “on average, pre-
dictions from model A were p% closer to observed values than
predictions frommodel B.”Noothermetric thatwe knowof pro-
vides this intuitive of an interpretation.

In the context of larger goals of developing models for infec-
tious disease prediction in the era of “big data” (Hay et al.
2013), developing a standardized way of measuring and eval-
uating forecasts may play an increasingly important role. Rela-
tive metrics could serve as a cornerstone of these efforts, as they
enable simple comparisons of prediction accuracy in different
settings.

While we have focused on the advantages of using the rela-
tive mean absolute error as a metric to evaluate forecasts, there
are some limitations and caveats that we must also present.
The relative MAE focuses its model evaluation on point predic-
tions. Other methods for prediction evaluation (such as scoring
rules) allow for evaluation based on a full predictive probabilis-
tic distribution, which take into account the uncertainty in the
predictions. These methods could play an important role in
distinguishing between prediction models. Additionally, under-
standing how model or data variability impacts the interpreta-
tion of the relative MAE would be a valuable contribution to
this area of research. It would be possible to extend the relative
MAEmetric to include confidence intervals based on the model
uncertainty. Finally, while assessing the relative MAE across a
set of preselected models may suggest horizons at which partic-
ular models perform better than others, this approach does not
explicitly suggest alternative models.

In conclusion, we recommend the use of the relative mean
absolute error metric to evaluate and compare time series pre-
dictions from both simple and complex models. This approach
could assist decision makers in a wide range of settings, who
need to understand and quantify the value of a multiple sets of
predictions.
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