Case Study in Evaluating Time Series Prediction Models Using the Relative Mean Absolute Error

Nicholas G. Reich, Justin Lessler, Krzysztof Sakrejda, Stephen A. Lauer, Sopon Iamsirithaworn & Derek A. T. Cummings

To link to this article: http://dx.doi.org/10.1080/00031305.2016.1148631

Accepted author version posted online: 12 Feb 2016.
Published online: 10 Aug 2016.

Submit your article to this journal

Article views: 338

View related articles

View Crossmark data
Case Study in Evaluating Time Series Prediction Models Using the Relative Mean Absolute Error

Nicholas G. Reich, Justin Lessler, Krzysztof Sakrejda, Stephen A. Lauer, Sopon Iamsirithaworn, and Derek A. T. Cummings

Abstract

Statistical prediction models inform decision-making processes in many real-world settings. Prior to using predictions in practice, one must rigorously test and validate candidate models to ensure that the proposed predictions have sufficient accuracy to be used in practice. In this article, we present a framework for evaluating time series predictions, which emphasizes computational simplicity and an intuitive interpretation using the relative mean absolute error metric. For a single time series, this metric enables comparisons of candidate model predictions against naive reference models, a method that can provide useful and standardized performance benchmarks. Additionally, in applications with multiple time series, this framework facilitates comparisons of one or more models’ predictive performance across different sets of data. We illustrate the use of this metric with a case study comparing predictions of dengue hemorrhagic fever incidence in two provinces of Thailand. This example demonstrates the utility and interpretability of the relative mean absolute error metric in practice, and underscores the practical advantages of using relative performance metrics when evaluating predictions.

1. Introduction

Statistical prediction models play a critical role in helping people plan for the future. While the merit of evaluating predictions is widely appreciated and understood, methods implemented to evaluate predictions vary in practice.

Many statistical prediction models have a goal of predicting a single quantitative outcome, for example, probability of 5-year cancer survival, or the number of wins of a sports team in a given season. Statistical models designed to predict the trajectory of a time series face added dimensions of complexity. For each observable unit of data (e.g., a time series observed up to a specific time), we might ask such models to predict not just one value, but a sequence of values. Additionally, if a robust and generalizable model is sought, the model must predict not just one time series effectively, but many.

These new dimensions quickly add complexity to the question of how to evaluate time series prediction models. If you are interested in evaluating predictions made at \(N \) separate time points, each at up to \(M \) time steps into the future, for \(L \) different time series, you need to make \(N \cdot M \cdot L \) distinct, if correlated, predictions.

Existing research has worked to identify the pros and cons of different methods for evaluating the accuracy of time series predictions. One trend in the literature highlights advantages of using relative absolute error metrics (e.g., the relative mean absolute error or the mean absolute scaled error) instead of squared error metrics to reduce the impact of outlying observations and to increase interpretability (Armstrong and Collopy 1992; Hyndman and Koehler 2006). In this context, several methods have been proposed to facilitate evaluation of predictions of seasonal data (see, e.g., the “naïve2” method in Makridakis and Hibon 2000), although these methods do not appear to have been widely adopted. Additionally, the measure called “forecast skill,” which relies on a relative mean squared error calculation, has been widely used for several decades in the field of weather forecasting (Murphy 1988). Another thread of work advocates for the use of proper scoring rules against the predicted distribution (Gneiting and Raftery 2007; Czado, Gneiting, and Held 2009; Held and Paul 2012). These methods, while having a strong theoretical foundation, are less directly comparable or interpretable and require a full predictive distribution.

In this article, we present a framework for multi-step time series prediction model evaluation that emphasizes computational simplicity and an intuitive interpretation to facilitate comparisons of model performance across different time series. Specifically, we discuss the “relative mean absolute error” metric and show its utility in predicting infectious disease incidence. The relative mean absolute error (or relative MAE) is defined as the average of the absolute values of the prediction errors from one model, divided by the average of the absolute values of the prediction errors from a second model (Hyndman and Koehler 2006).

A strength of the relative MAE metric that we find particularly compelling for use in practice is how it enables standardized
comparisons of candidate models with reference models. This encourages honest evaluation (i.e., a model could have very low error, but a simpler model may have similarly low error) and can help identify the strengths and weaknesses of prediction models. Generally speaking, we conceive of reference models as being able to create reasonable, if naïve, predictions by analysts without extensive formal quantitative or statistical training. Although, we note that in practice any fitted model, simple or complex, could be used as a comparative reference. In many fields of research or application, there may be existing standard and accepted models that would be suitable as a standard reference model.

For models predicting disease incidence—the example presented in this article—there is not a standard, accepted methodology for creating and evaluating predictions. In part, this reflects the wide range of scientific and planning goals in these prediction efforts. Having an accepted set of prediction accuracy metrics would enable comparisons across different studies and would be a valuable contribution to the field. Appropriate reference models for predicting disease incidence could be as simple as an overall measure of central tendency (e.g., mean or median) or, for diseases that follow a seasonal pattern, an historical monthly average. For models predicting the timing of different features of an outbreak (duration, peak, onset, etc.), reference models could be based on historical trends or trends from other nearby locations.

In Section 2, we describe a framework for facilitating comparisons of predictions for time series data. In Section 3, we present a detailed evaluation of prediction models using a dataset with incidence of dengue fever in Thailand.

2. A Generalizable Metric for Evaluating Time Series Prediction Models

We focus our discussion on evaluating the accuracy of time series predictions. Specifically, we are interested in summarizing a model’s error for each observed value. Predicting other features of a time series may also be desirable: for example, predicting the timing of a peak, the cumulative counts, or the percentage of predictions that fall within a given percentage of the true value, to name a few. The methods defined below may be adapted for these types of metrics, although the current work focuses on implementing these methods in the context of predicting the value of unobserved observations.

We consider data, \(y_1, \ldots, y_T \) from a time series broken into continuous blocks, or sets of sequential times, labeled \(k = 1, \ldots, K \). We are interested in comparing the performance of multiple models for the specific block \(k^* \). In a prediction context, block \(k^* \) might represent data unavailable at the time of fitting. Assume that we fit a suite of models to data excluding block \(k^* \) and each of these models can be used to generate predictions for any given time \(t \). Let \(\hat{\mu}_{t,k} \) be the (out-of-sample) predicted outcome for time \(t \) from model \(A \), made at time \(t - h \). In other words, the prediction horizon, or the number of time steps forward this prediction was made, is defined as \(h \).

2.1. The Relative Mean Absolute Error

For a particular block of observations, the mean absolute error for model \(A \) at prediction horizon \(h \) is defined as \(\text{MAE}_{A,h} = \frac{1}{N_k} \sum_{t \in k^*} |y_t - \hat{\mu}_{t,k}^A| \), where \(N_k \) is the number of observations in block \(k^* \). Squared error metrics are commonly used in statistical model evaluation but we focus here on absolute errors as the basis for evaluating predictions, due to two distinct features of the mean absolute error metric. First, the MAE provides a very easily interpretable metric: the average error across all predictions. Interpretability is a significant advantage when working with collaborators who are eager to understand and interpret the evaluations of the prediction models. Second, squared error metrics are sensitive to outlier prediction errors (Armstrong and Collopy 1992; Hyndman and Koehler 2006). It is known that the median minimizes expected loss when the loss function is the absolute value. This implies that the choice of a prediction model based on mean absolute error is not as likely to be influenced by a small number of large prediction errors compared to using the squared error.

We define the relative mean absolute error between models \(A \) and \(B \) at horizon \(h \) as

\[
\text{relMAE}_{A,B,h} = \frac{\text{MAE}_{A,h}}{\text{MAE}_{B,h}}.
\]

This is an extension of the metric proposed by Hyndman and Koehler (2006) to account for multi-step predictions, or different prediction horizons (Hyndman and Koehler 2006). Additionally, Hyndman and Koehler specifically recommended a special form of the relative MAE, that they named the mean absolute scaled error (MASE) for use of evaluating predictions across multiple time series with different scales (Hyndman and Koehler 2006). They defined the MASE as (Hyndman and Koehler 2006):

\[
\text{MASE} = \frac{\sum_{t=1}^T |y_t - \hat{\mu}_{t}^A| / T}{\sum_{t=2}^T |y_t - y_{t-1}| / (T - 1)}.
\]

Heuristically, this represents the ratio of the average absolute value of the residual from the prediction model (the numerator) and the average absolute value of the residual from a naïve “reference” model. The MASE is equivalent to the relative MAE with model \(B \) taken as a simple stationary autoregressive lag-1 (AR-1) model where the predicted value of \(y_t \) or \(\hat{\mu}_{t,h} \) is simply \(y_{t-1} \) for all values of \(h \). However, the MASE is defined with respect to a fixed reference model that becomes meaningless when predictions are evaluated for long time horizons, particularly in periodic systems. The relative MAE avoids some of these shortcomings.

2.2. Properties of the Relative MAE

The relative MAE has several desirable properties. First, the interpretation of the relative MAE for a given dataset does not depend on the scale of the data. Second, the relative MAE has an intuitive interpretation. Since the relative MAE is a ratio, a value near 1 indicates that the magnitude of the two errors is approximately equal whereas a value of 2 indicates that the magnitude of prediction errors for the candidate model is twice that of prediction errors from the reference model. Third, in contrast with other relative error metrics that calculate relative errors for each observation, the relative MAE has a summary statistic of baseline model errors in the denominator. For example, the median relative absolute error defined by Hyndman and Koehler...
(2006) takes the median of $\frac{y_t - \hat{\mu}_t}{\hat{\sigma}_t}$ values. In a situation where residuals of each model are Gaussian, the distribution of these relative errors is Cauchy and therefore has undefined variance (Hyndman and Koehler 2006). By using a summary of baseline model residuals in the denominator, the relative MAE is therefore a more stable relative error metric.

Fourth, as defined above, the relative MAE easily accommodates settings with long prediction horizons, or when predictions are made many steps ahead into the future. When predictions are desired far into the future, the reference model for the original MASE will not evaluate the predictions in a meaningful way because it only considers one-step-ahead prediction errors. Therefore, the flexibility of the reference model definition in the relative MAE and of the extension to multiple prediction horizons, makes this a more useful and relevant metric in evaluating multi-step predictions of time series data. In Section 3, we systematically explore the performance of the relative MAE using a time series application that requires predictions at multiple steps forward into the future.

Finally, we also observe that the relative MAE lends itself to comparisons between any two models, not necessarily just a reference and a set of candidate prediction models. For example, a simple but important property of the relative MAE is that

$$\text{relMAE}_{A,B,h} = \frac{\text{relMAE}_{A,C,h}}{\text{relMAE}_{B,C,h}},$$

indicating that as long as a common reference model is used in two model comparisons (e.g., A vs. C and B vs. C), the relative MAE can be computed between the two models that were not explicitly compared (e.g., A vs. B).

2.3. Using Scaled Observations with Relative MAE

Since data from predictions may be skewed, we discuss briefly the impact of scaling the y and $\hat{\mu}$ inputs before the calculations are made. (Note: in this section we suppress the prediction horizon notation for simplicity.) The choice of scaling functions for the MAE calculation affects the interpretation of both the MAE and the relative MAE. Simply plugging in the data transformations used in model estimation (i.e., using $|\log y - \log \mu|$ in the MAE) leads to arbitrary implicit loss functions in the model evaluation. This choice should instead be made based on an implicit or explicit loss function and it leads to a generalized MAE defined as

$$\text{MAE} = \frac{1}{T} \sum_{t=1}^{T} |f(y_t) - f(\hat{\mu}_t)|,$$

where the function $f(\cdot)$ is some function that transforms both the predicted and observed values.

This article so far considers all errors on the original scale of the data where f is the identity function. The loss function implied by this choice is one that emphasizes absolute differences. It implies that errors of a given magnitude are of equal importance whether the time series observations are near zero or near a large value—cost must be constant regardless of the scale.

An alternative cost function might emphasize relative error compared to a practically or scientifically meaningful reference point. In this case, the cost of an error would decrease with distance from the reference point. For example, a $5000 error in the predicted value of a $10,000 stock portfolio might be a disaster whereas the same $5000 error in a million dollar portfolio would not be meaningful.

For an implicit relative cost function with count data, we suggest calculations of the MAE on the log-scale. To do this for count data—or for other data with a meaningful baseline value—we define f in the MAE calculations as $f(x) = \log(x - b + 1)$ where b is the baseline. For count data, where $b = 0$, the modified calculations of the mean absolute error are

$$\text{MAE} = \frac{1}{T} \sum_{t=1}^{T} |\ln(y_t + 1) - \ln(\hat{\mu}_t + 1)| = \frac{1}{T} \sum_{t=1}^{T} |\ln \left(\frac{y_t + 1}{\hat{\mu}_t + 1}\right)|.$$

With this MAE calculation, if either $\frac{y_t + 1}{\hat{\mu}_t + 1} = C$ or $\frac{y_t + 1}{\hat{\mu}_t + 1} = \frac{1}{C}$, then the mean absolute error for that observation will be the same, no matter what y_t or $\hat{\mu}_t$ are. For example, this means that $(y_t + 1, \hat{\mu}_t + 1) = (100, 110)$ has the same contribution to the MAE as $(y_t + 1, \hat{\mu}_t + 1) = (10, 11)$ or $(y_t + 1, \hat{\mu}_t + 1) = (11, 10)$, or any $(y_t + 1, \hat{\mu}_t + 1)$ such that $\frac{y_t + 1}{\hat{\mu}_t + 1} = 1.1$ or $\frac{y_t + 1}{\hat{\mu}_t + 1} = 1.1$. Whether this is appropriate depends on the application-specific implicit loss function.

3. Case Study: Predicting Infectious Disease Incidence

3.1. Prediction Models for Dengue Hemorrhagic Fever in Thailand

The spread of infectious disease is a dynamic process driven by many biological and social factors. While our knowledge of these biological mechanisms (e.g., infectiousness, pathogen-on-pathogen, and pathogen-environment interactions) and social/behavioral patterns (e.g., networks of social contacts and travel) has grown significantly in recent decades, predicting infectious disease patterns remains a challenging task.

We reviewed a small, nonrandom sample of peer-reviewed publications that focused on predicting infectious disease outbreaks. This small sample of recent efforts reveal a variety of approaches used for comparing predictions to reference models. In short, comparing new predictions to predictions from reference models does not yet appear to be standard practice in the infectious disease prediction literature. Shaman et al. describe a model used to prospectively predict the peak of seasonal influenza outbreaks in the U.S. (Shaman and Karspeck 2012; Shaman et al. 2013). Predictions of the peak timing of the outbreak were often accurate to within 1 week. As a reference comparison, they used a model that chose resampled historical peaks, and their model outperformed this reference model, with increasingly better relative performance as the flu season progressed. In forecasting outbreaks of dengue fever,
We explicitly modeled the expected number of cases as a generalized additive model (i.e., a generalized linear model estimated by penalized maximum likelihood) (Hastie and Tibshirani 1990)

$$
\log \left(\lambda_{t,i} \cdot [y_{t-1,i} + 1] \right) = f_i(t) + \sum_{j \notin \mathcal{C}_i} \alpha_j \log \frac{y_{t-1,j} + 1}{y_{t-2,j} + 1} + \log \left(y_{t-1,i} + 1 \right),
$$

where $f_i(t)$ is assumed to be a province-specific cyclical cubic spline and \mathcal{C}_i is the set of the three most correlated provinces with province i (possibly including province i itself) at a one biweekly lag across the entire dataset. With $\lambda_{t,i}$ as a function of the lag-1 and lag-2 terms, we have adapted the structure of an ARIMA(0,1,0) model, using a difference at 1-lag on the log-scale. This captures the slope of transmission intensity across several different locations. We note that this model is one specific parameterization of a general class of ARIMA-style models that consider different numbers of correlated provinces (i.e., not just 3 and different numbers of lag-times as predictors of the current incidence in province i at time t). The goal of this modeling exercise is to demonstrate the utility of the relative MAE metric in evaluating predictions from these and other similar time series modeling examples.

The autoregressive terms in the model for $\lambda_{t,i}$ approximate the reproductive rate for province j at time $t - 1$, and are designed to capture the slope of recent incidence in the correlated provinces. The addition of the value 1 in the numerator contains a “immigration rate” added to each observation (Zeger and Qaqish 1988).

3.1.2. Autoregressive Lag 1 (AR-1) Model

The first reference model was a simple AR-1 model used in the definition of the mean absolute scaled error, described in Section 2.1. When making an h-step ahead prediction for time t using data up to time $t - h$, the predicted value was $\hat{\mu}_{t,h} = y_{t-h}$. Note that this meant that if we were generating a prediction for 13 biweeks (half a year) into the future, the predicted value was the most recently observed value. We observe that for the AR-1 reference model, the predicted value for y_t changes depending on when the prediction is made. For example, if a one-step-ahead prediction is made for time t' at time $t' - 1$, the predicted value for the AR-1 reference model would be $\hat{\mu}_{t',1} = y_{t'-1}$. A two-step-ahead prediction for the same time point would yield a predicted value of $\mu_{t',2} = y_{t'-2}$.

3.1.3. Seasonal Medians Model

The second reference model predicted a median seasonal value, so $\mu_\tau = \text{median}(y_{S_\tau})$. In this model, the median is calculated across all values of t that fall in the set S_τ, which contains all times in the training data with the same time-of-year as t. For
Figure 1. Reported cases of dengue hemorrhagic fever for Bangkok and Chiang Mai between 1968 and 2010.

example, if the time unit is months and \(t \) is defined in calendar years with fractional months, then \(S_t = \{ t^* : t^* \mod 12 = t \mod 12 \} \). The seasonal reference model is time-invariant: the predictions for a particular time \(t' \) are the same no matter when the prediction occurs.

3.1.4. Overall Median Model

The third reference model predicted an overall median value, so \(\hat{\mu}_t = \text{median}(y_t) \) where the median is calculated across all times in the training data. This overall median reference model is time-invariant: the predictions for time \(t' \) are the same no matter when the prediction occurs.

3.2. Model Training and Validation

We implemented a leave-one-year-out cross-validation procedure to create out-of-sample predictions for the mean absolute error (MAE) calculations. For all predictions, data from 1968 through 1999 was included in the training dataset. For each year from 2000 to 2009, a single full calendar year of case data was left out in turn from the training dataset and the model was fit to the remaining case data. This ensured that all predictions were made based on the same amount of training data (42 years of case data). For every biweek in the year that was left out from the training dataset, we made a set of \(h \) step-ahead predictions, where \(h \) ranged from 1 biweek to 13 biweeks (about 6 months). To construct an \(h \) step-ahead prediction for biweek \(t \), we assumed case data up to biweek \(t - h \) were complete. We then sequentially predicted case counts for the following \(h \) biweeks, up through time \(t \). The resulting predicted case counts (\(\hat{\mu}_{t,h} \)) were then compared to the final, observed case count \(y_t \) in computing the MAE. Figure 3 shows the MAE calculated on the predictions from the 10 years of out-of-sample cross-validation.

These models were fit to the data using the mgcv package for the R statistical programming language (Wood 2011).

3.3. Results from Model Comparisons Give Insight into Time Series Predictions

We evaluated model performance using relative MAE. Based on our previous work and our knowledge on this topic, we expected that the candidate Poisson model presented above should beat an average prediction model for the seasonal dengue incidence data. For some (if not most) provinces, we expected it to provide short- and long-term predictions that would be better than just guessing the seasonal mean. For short-term predictions, we expected the model to do better in many cases than a simple auto-regressive model. These kinds of knowledge and statements about our model informed our choices of reference models to compare with our candidate model.

Predictions of dengue fever incidence in Bangkok showed mixed results at different time scales. A sample of predictions for time points in 2005 is shown in Figure 2. This plot provides a snapshot of how each of the four models performed at one specific time point. Summaries of the predictions across all years are shown in Figure 3. This plot provides an overall evaluation of how the models performed across all time points.

The errors for predictions from the AR-1 reference model in both provinces monotonically increased as the predicted time point moved further into the future. For Bangkok, the mean absolute error for the AR-1 model was 42.9 cases predicting 1 biweek ahead, and 169.5 cases predicting 6 months (13 biweeks) ahead. For Chiang Mai, the mean absolute errors for the AR-1 model were 7.8 cases and 44.2 cases for predicting 2 weeks and 6 months ahead, respectively.

Since the seasonal and overall median predicted values do not depend on recently observed values, they always make the same prediction for a given time point. This results in the prediction errors being constant for a specific observation across prediction horizons. In Bangkok, the simple seasonal model produced predictions that were on average 51% further from the observed value than a model that predicted the median observed value for every observation (\(\frac{\text{MAE}_{\text{seasonal}}}{\text{MAE}_{\text{median}}} \approx 1.51 \)). In Chiang Mai, this pattern
Figure 2. Example of cases and prediction errors for Bangkok for a single time point. This figure shows the predictions made for 1 to 13 biweeks into the future at biweek 7 in 2005. This is merely a sample of the predictions made, as predictions like these were made for each biweek in 2000 through 2009. Black bars indicate the number of dengue hemorrhagic fever cases observed when predictions were made. Gray bars indicate cases that were subsequently observed. The four lines represent predictions from the four models: seasonal medians (circles), AR-1 (triangles), overall median (squares), and our candidate Poisson model (crosses).

Figure 3. Mean absolute error (MAE) and relative mean absolute error (relative MAE) scores for Bangkok (left column) and Chiang Mai (right column) based on 10 years of cross-validated predictions. These metrics show the errors calculated not just for 2005 (as in Figure 2, but for all cross-validated years (2000–2009). The top two subfigures show the mean absolute error for each model. Errors are shown for the candidate Poisson model (crosses), historical medians model (circles), AR-1 model (triangles), and overall median model (squares). The bottom two subfigures show the relative MAE values comparing the candidate Poisson regression model to the seasonal median, overall median, and AR-1 reference models.
was reversed, as the seasonal model had predictions that were on average 24% closer to the observed value ($\frac{\text{MAE}_{\text{Poisson}}}{\text{MAE}_{\text{AR-1}}}$ = 0.76). This is likely reflective of the stronger seasonal patterns of dengue in Chiang Mai, visible in Figure 1.

The Poisson model in each province had nearly equivalent performance to the AR-1 model predicting 1 biweek ahead ($\frac{\text{MAE}_{\text{Poisson}}}{\text{MAE}_{\text{AR-1}}}$ = 0.99 for Bangkok, $\frac{\text{MAE}_{\text{Poisson}}}{\text{MAE}_{\text{AR-1}}}$ = 0.97 for Chiang Mai). The Poisson models showed much less relative error than the AR-1 model when predicting 6 months ahead ($\frac{\text{MAE}_{\text{Poisson}}}{\text{MAE}_{\text{AR-1}}}$ = 0.76 for Bangkok, $\frac{\text{MAE}_{\text{Poisson}}}{\text{MAE}_{\text{AR-1}}}$ = 0.49 for Chiang Mai).

In Bangkok, across all the years studied, we observed that our Poisson model consistently outperformed both the AR-1 and seasonal median reference model, as shown by relative MAE scores below 1 for both reference model comparisons at all prediction steps ahead (see Figure 3). However, at longer prediction horizons (6 biweeks and above, for Bangkok) simply predicting an overall median provided more accuracy than any of the models considered. Predicting 4 biweeks out, the Poisson model achieved its best relative performance compared to all models, with predictions at least 8% closer to the truth on average than any other model. In Chiang Mai, the Poisson model made better predictions than every model only for the first 3 biweeks, after which the seasonal model made better predictions. This analysis shows that while in both locations our candidate Poisson models provided marginal improvement in predicting dengue in the medium-term (1–3 months), these models had equivalent or worse performance than other reference models at short and longer prediction horizons.

4. Discussion

We have shown that using the relative mean absolute error framework described above to compare prediction models can have several important advantages. First, using metrics that do not benchmark performance against a reference model (such as an autoregressive model, or the average of recent observations) can lead to overstating the added value of predictions, even when accepted methods for evaluation are used. For example, if a candidate prediction model has very low cross-validated mean squared error that is in general a good thing. But if a simple autoregressive model can achieve the same score, then the candidate model may not have much value. Second, comparisons against different types of reference models can help identify the strengths and weaknesses of prediction models. Third, as shown in our case study, using this metric also facilitates comparisons of similar modeling techniques between two different time series. This property of the relative MAE makes it particularly conducive to comparisons designed to evaluate generalizability of a given modeling approach. Finally, these comparisons can demonstrate the value of simple modeling efforts, leading to improved predictions at a lower cost. This may be especially true if the methods or data used for complex predictions are time- and/or resource-intensive.

In our infectious disease application (see Section 3), we observed similar overall patterns of errors and model comparisons for all models but the Poisson when comparing relative MAE values calculated using on the log-scale and on the original data scale. We observed that calculating the MAE on the log-scale reduced the relative error of the Poisson model disproportionately among the four models considered. (Data not shown.) This may reflect the fact that the model was optimized and estimated on the log-scale. This further underscores the importance of understanding the context in which the predictions are being made, and choosing a scaling method that reflects the loss functions used by decision makers.

Evaluating model predictions against different reference models can provide valuable information about model performance, especially at different time-scales. Comparing the mean absolute error for different models can tell us which model made better predictions. For example, we saw that reference models based on recent observations served as good benchmarks for other models when making short-term predictions. When making longer-term predictions, models that accounted for seasonal trends or longer-term moving averages did not always improve our models’ predictive ability.

We see several concrete benefits of using the absolute error instead of the squared error (a more traditional choice in statistical error evaluation) as the basis for these comparisons. First, as others have observed, the absolute error is less prone to being influenced by several outlying points or observations. Second, we find the interpretability of the relative mean absolute error to be particularly compelling, especially in a context where the results need to be explained to a nonquantitative audience. For example, the relative MAE allows us to say that “on average, predictions from model A were 8% closer to observed values than predictions from model B.” No other metric that we know of provides this intuitive of an interpretation.

In the context of larger goals of developing models for infectious disease prediction in the era of “big data” (Hay et al. 2013), developing a standardized way of measuring and evaluating forecasts may play an increasingly important role. Relative metrics could serve as a cornerstone of these efforts, as they enable simple comparisons of prediction accuracy in different settings.

While we have focused on the advantages of using the relative mean absolute error as a metric to evaluate forecasts, there are some limitations and caveats that we must also present. The relative MAE focuses its model evaluation on point predictions. Other methods for prediction evaluation (such as scoring rules) allow for evaluation based on a full predictive probabilistic distribution, which take into account the uncertainty in the predictions. These methods could play an important role in distinguishing between prediction models. Additionally, understanding how model or data variability impacts the interpretation of the relative MAE would be a valuable contribution to this area of research. It would be possible to extend the relative MAE metric to include confidence intervals based on the model uncertainty. Finally, while assessing the relative MAE across a set of preselected models may suggest horizons at which particular models perform better than others, this approach does not explicitly suggest alternative models.

In conclusion, we recommend the use of the relative mean absolute error metric to evaluate and compare time series predictions from both simple and complex models. This approach could assist decision makers in a wide range of settings, who need to understand and quantify the value of a multiple sets of predictions.
Funding

NGR, JL, KS, SAL, and DATC were funded by NIH NIAID grant 1R01AI102939. Additionally, NGR and DATC report funding from NIH NIAID grant R21AI115173.

ORCID

Nicholas G. Reich http://orcid.org/0000-0003-3503-9899
Justin Lessler http://orcid.org/0000-0002-9741-8109
Krzysztof Sakrejda http://orcid.org/0000-0001-7587-355X
Stephen A. Lauer http://orcid.org/0000-0003-2948-630X
Sopon Iamsirithaworn http://orcid.org/0000-0002-6109-5002
Derek A. Cummings http://orcid.org/0000-0002-9437-1907

References

