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 a b s t r a c t

Ensemble forecasts often outperform forecasts from individual standalone models, and
have been used to support decision-making and policy planning in various fields. As
collaborative forecasting efforts to create effective ensembles grow, so does interest
in understanding individual models’ relative importance in the ensemble. To this end,
we propose two practical methods that measure the difference between ensemble
performance when a given model is or is not included in the ensemble: a leave-one-
model-out algorithm and a leave-all-subsets-of-models-out algorithm, which is based on
the Shapley value. We explore the relationship between these metrics, forecast accuracy,
and the similarity of errors, both analytically and through simulations. We illustrate
this measure of the value a component model adds to an ensemble in the presence of
other models using US COVID-19 death probabilistic forecasts. This study offers valuable
insight into individual models’ unique features within an ensemble, which standard
accuracy metrics alone cannot reveal.

© 2026 International Institute of Forecasters. Published by Elsevier B.V. All rights are
reserved, including those for text and data mining, AI training, and similar technologies.
1. Introduction

Forecasting is a crucial challenge across fields such as 
economics, finance, climate science, wind energy, and epi-
demiology. Accurate forecasts of future outcomes help in-
dividuals and organizations make informed decisions, en-
abling better preparedness and more effective responses 
to uncertainty. Ensembles (or combinations) of individual 
forecasts are considered the gold standard because they 
generally provide more reliable performance in terms of 
accuracy and robustness than most, if not all, individual 
forecasts (Clemen, 1989; Gneiting & Raftery, 2005; Lutz 
et al., 2019; Timmermann, 2006; Viboud et al., 2018).

In collaborative forecasting efforts, only the ensemble’s 
forecasts are used or communicated. For instance, during 
the COVID-19 pandemic, the US COVID-19 Forecast Hub 
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(https://covid19forecasthub.org/) combined probabilistic 
forecasts from over 90 research groups to produce en-
semble forecasts that retain the structure of a predictive 
distribution for cases, hospitalizations, and deaths in the 
US (Cramer et al., 2022; Ray et al., 2023). These ensemble 
forecasts were used by the US Centers for Disease Con-
trol and Prevention (CDC) as official short-term forecasts 
to communicate with the general public and decision-
makers (see Cramer, et al. (2022) and Centers for Disease 
Control and Prevention (2023)). The Intergovernmental 
Panel on Climate Change (IPCC) also uses a multi-model 
ensemble to assess robustness and uncertainty arising 
from differences in model structures and process variabil-
ity (Lee et al., 2021) in its official reports, which policy-
makers use as a foundation for climate-related decisions 
and strategies.

In this work, we develop a measure of the extent to 
which component models contribute to the ensemble’s 
skill. This model importance metric is generally applicable 
with a range of measures of forecast skill, for example, the 
squared prediction error (SPE) for point predictions and 
rboards: Measuring individual model importance based on contribution 
g/10.1016/j.ijforecast.2025.12.006.
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Fig. 1. Distributional forecasts of COVID-19 incident deaths at 1- through 4-week horizons in Massachusetts made on November 27, 2021, by three 
models. Solid black dots show historical data available as of November 28. Blue dots indicate predictive medians, and the shaded bands represent 
95% prediction intervals. The open black circles represent observations that were not available when the forecast was made. The 95% prediction 
intervals of the UMass-MechBayes model (truncated here for better visibility of the observed data) extend up to 671 and 1110 for the 3-week and 
4-week ahead horizons, respectively.
 

I 
the weighted interval score (WIS) or log score for prob-
abilistic forecasts (see details in Section 2.1). In the par-
ticular case of the expected SPE of a predictive mean, we 
show that our measure of model importance can be de-
composed into terms measuring each component model’s 
forecast skill as well as terms that can be interpreted 
as measuring how similar models’ predictions are to one 
another. Through simulated examples, we demonstrate 
that the insights from this decomposition in the point 
prediction setting can be extended to other contexts, such 
as scoring probabilistic forecasts using WIS.

1.1. Motivating example

The predictions from different models may differ de-
pending on the model’s structure or the input data sources
used. As an example, Fig.  1 shows the predictive distri-
butions for incident deaths from three models submitted 
to the US COVID-19 Forecast Hub, along with eventu-
ally observed values. The quantile-based forecasts were 
made at 1-week through 4-week ahead horizons in Mas-
sachusetts on November 27, 2021. Here, two models 
under-predicted and one model over-predicted the out-
comes. The CovidAnalytics-DELPHI model has narrow 95% 
prediction intervals. Still, its forecasts are more biased 
than those of the other two models across all four hori-
zons, with especially large errors at forecast horizons 
of 3 and 4 weeks. On the other hand, the point esti-
mates from the UMass-MechBayes model show less bias, 
but the predictive distributions are wide, especially for 
the 4-week-ahead incident deaths. The forecasts of the 
Karlen-pypm model are moderate in both bias and the 
width of the prediction interval. These different predic-
tive abilities are reflected in evaluation scores used for 
probabilistic forecasts. At the 4-week forecast horizon, 
the Karlen-pypm model had the best WIS with 20.4,
2

followed by UMass-MechBayes and CovidAnalytics-DELPH
with scores of 38.5 and 123.4, respectively. As discussed 
in more detail in Section 3.2, in this specific instance, 
the two models that were more accurate by traditional 
metrics actually proved to be less ‘important’ in the con-
text of a multi-model ensemble because they were sim-
ilar to multiple other submitted models. In particular, 
those two models, along with most models that con-
tributed to the ensemble, had a small downward bias, 
which was partially offset by overpredictions from the 
CovidAnalytics-DELPHI model. The predictions that were 
too high, while less accurate than those from other mod-
els, were the only ones to over-predict the eventual out-
come and therefore were important in offsetting a bias 
towards under-prediction across all the other models. 
This example motivates a closer examination of model 
importance within the ensemble forecasting framework.

1.2. Related literature

In the context of ensemble forecasting, some mod-
els will add more value than others. The problem of 
measuring each component model’s impact on ensemble
predictions bears methodological similarities to measur-
ing variable importance in more standard regression-
type modeling settings. Variable importance measures 
quantify the contribution of individual variables to the 
model’s predictive performance. They are commonly used 
in model aggregation techniques such as Random Forest 
(Breiman, 2001) and Gradient Boosting (Friedman, 2001).

As a related concept, Shapley values from cooperative 
game theory measure, on average, how much each feature 
contributes to the predicted outcome across all possible 
coalitions of feature values. Building on the logic of the 
Shapley values, Giudici and Raffinetti (2021) proposed 
rank-based methodologies integrated with the Lorenz 
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Zonoid approach to quantify the contribution of individual 
predictors in a regression-like setting. Borup et al. (2024) 
also developed performance-based metrics tailored to the 
context of time series forecasting to achieve similar goals.

Beyond evaluating the contribution of predictors, the 
concept of Shapley values has been used to assess the 
value of component models in ensemble settings. For 
example, Pompigna and Rupi (2018) applied this concept 
to a method for weighting component models within an 
ensemble used to predict weekly/monthly fluctuations in 
average daily transport traffic. In the field of epidemic 
forecasting, Adiga et al. (2023) calculated Shapley-like 
values to determine the influence of each component 
model in the performance of a Bayesian Model Averaging 
ensemble at different forecasting phases of the COVID-19 
pandemic.

While these prior studies primarily focus on point 
predictions, our framework is designed for probabilistic 
forecasts, incorporating uncertainty quantification to cap-
ture the full distributional behavior of predictive models, 
which we identify as a central contribution of our work.

The value of including diverse models in an ensemble 
has been discussed in numerous studies. Batchelor and 
Dua (1995) quantified diversity using the probability of 
a reduction in error variance, and applying this metric 
to data on US economic forecasts shows that ensem-
bling is more beneficial when combining diverse forecasts 
than when combining similar ones. This idea has been 
supported by several follow-up studies, including Lam-
berson and Page (2012), Lichtendahl and Winkler (2020), 
Thomson et al. (2019) and Kang et al. (2022), which simi-
larly emphasize that increasing the diversity of ensemble 
members improves overall ensemble performance. Fur-
thermore, Brown et al. (2005) have demonstrated the 
benefits of both reducing individual forecast error and 
maximizing forecast diversity. The ambiguity decompo-
sition demonstrated that this is a desirable feature of 
ensemble construction. This line of research provides a 
blueprint for improving ensemble accuracy by increasing 
the diversity of accurate individual forecasters. The model 
importance metric we introduce, while related to the 
ambiguity decomposition, provides a more direct inter-
pretation in terms of ensemble forecast accuracy and can 
serve as a general probabilistic forecast metric for evaluat-
ing or ranking the contributions of each component model 
to an ensemble.

The remainder of this paper is organized as follows. 
In Section 2, we address some accuracy metrics com-
monly used for point forecasts and quantile forecasts 
and introduce our proposed model importance metrics, 
including two algorithms for model importance metric 
calculation in the context of probabilistic forecasting. We 
also discuss the decomposition of the model importance 
metric in the context of point forecasts. We follow this 
with simulation studies to demonstrate that the insights 
from the decomposition based on point forecasting gen-
eralize to the probabilistic forecast setting and to examine 
the effect of a component model’s distributional fore-
cast bias and dispersion on the importance metric in 
the leave-one-model-out algorithm setting. Section 3 pro-
vides results of applying the model importance metrics to 
3

real-world probabilistic forecast data from the US COVID-
19 Forecast Hub. We present a case study investigating 
the relationship between the importance metric using the 
leave-one-model-out algorithm and WIS with quantile-
based forecasts of incident deaths in Massachusetts in 
2021. Subsequently, we compare all the metrics across a 
larger dataset. Section 4 discusses the limitations of our 
study and outlines potential directions for further inves-
tigations. Section 5 concludes the paper with a summary 
of the main findings and implications.

2. Methods

2.1. Accuracy metrics

Among the various forecast skill metrics developed to 
assess forecast quality, we focus on the mean squared 
prediction error for point predictions and the weighted 
interval score for probabilistic forecasts.

The squared prediction error (SPE) is defined as the 
square of the difference between the observed outcome 
y and the predicted value ŷi from model i: 

SPE(ŷi, y) = (y − ŷi)2 := e2i . (1)

For the real-valued random variables Y  and Ŷi, the ex-
pected squared prediction error (ESPE) is formulated as

ESPE(Ŷi, Y ) = E[(Y − Ŷi)2], (2)

which quantifies the average squared discrepancy be-
tween the model’s predicted values and the actual ob-
served values. ESPE accounts for the general performance 
of the model by considering the average error across 
all possible predictions and penalizes larger errors more 
significantly than smaller ones by squaring the differences 
between predicted and actual values. A lower ESPE indi-
cates a model that makes predictions closer to the actual 
values on average.

The weighted interval score (WIS) of a probabilistic 
forecast is an approximation of commonly used proba-
bilistic scoring rules such as the continuous ranked prob-
ability score (CRPS) and pinball loss. The WIS is expressed 
in terms of predictive quantiles as follows (Ray et al., 
2023):

WIS(q1:K , y) =
1
K

K∑
k=1

2{1(−∞,qk](y) − τk}(qk − y), (3)

where q1:K  denotes a set of K  distinct predictive quantiles, 
with qk representing the kth quantile evaluated at the 
quantile level τk, for some positive integer K . For example, 
the predictive median corresponds to the quantile at τk =

0.5. y denotes the observed value and 1(−∞,qk](y) is an 
indicator function that equals 1 if y ∈ (−∞, qk] and 0 
otherwise.

The average of the accuracy metrics, either the SPE val-
ues or the WIS values, for model i across many modeling 
tasks represents the overall performance of model i.
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2.2. Ensemble methods

Forecasts from multiple predictive models are aggre-
gated to produce ensemble forecasts. The quantile-based 
forecasts are a common way to represent probabilistic 
forecasts, and the predictive quantiles generated from 
each component forecaster are used for the quantile-
based ensemble forecast. Let different forecasters be in-
dexed by i (i = 1, 2, . . . , n) and let qik denote the kth 
quantile from model i. The ensemble forecast value at 
each quantile level is calculated as a function of the com-
ponent model quantiles 
qensk = f (q1k, . . . , q

n
k). (4)

Eq. (4) is also applicable to point forecasts, computing the 
ensemble prediction as a function of the point forecasts 
from component models. We note that the qik used here-
after refers to the kth quantile of a model i for a specific 
forecasting task, which is a combination of the forecast 
location, date, and horizon.

We employed the mean ensemble method, where all 
component forecasters have equal weight at every quan-
tile level.

2.3. Model importance metric

We propose two algorithms to evaluate a component 
model’s contribution to an ensemble.

2.3.1. Leave all subsets of models out (LASOMO)
We use the Shapley value (Shapley, 1953), a concept 

from cooperative game theory.
Let N be the set of n players in a game, and v be a real-

valued characteristic function of the game. The Shapley 
value φi of player i (i = 1, 2, . . . , n) is defined as 

φi =

∑
{S:S⊂N, i/∈S}

s!(n − s − 1)!
n!

[
v(S ∪ {i}) − v(S)

]
, (5)

where S is a coalition that consists of s players out of the 
total of n players, excluding player i (s ∈ {0, 1, 2, . . . , n−

1}). When s = 0, it indicates that S = ∅.
The characteristic function v is assumed to satisfy 

v(∅) = 0 and for each subset S, v(S) represents the gain 
that the coalition can achieve in the game. Accordingly 
v(S ∪ {i}) − v(S) in Eq. (5) represents the marginal con-
tribution of player i to the coalition S, and its weight 
is computed by considering all possible permutations of 
players in S. An interpretation of this concept can be 
found in Section 1 of the supplement for further reference.

We calculate the importance metric of a component 
model in ensemble creation using the Shapley value. The n
players and a coalition of s players in the game correspond 
respectively to the n individual forecasting models and a 
collection of s component models for an ensemble in our 
context. A proper scoring rule serves as the characteristic 
function. However, this choice of the characteristic func-
tion does not satisfy the assumption that the value of the 
empty set is zero, as any scoring metric cannot be applied 
to an empty set of forecasting models, which means no 
prediction. It is also not meaningful to assign a quantita-
tive score to ‘‘no prediction’’. To avoid this difficulty, we 
4

modify Eq. (5) to eliminate the case of the empty subset. 
Consequently, the denominator in Eq. (5) is replaced with 
(n − 1)!(n − 1). See also Section 1 of the supplement.

For a single forecast task τ , the importance metric (i.e., 
the contribution) of the component model i is calculated 
by

φiτ =

∑
{S:S⊂N, i/∈S}

s!(n − s − 1)!
(n − 1)!(n − 1)

[
µ(F S∪{i}

τ , yτ ) − µ(F S
τ , yτ )

]
,

(6)

where FA
τ  represents the ensemble forecast constructed 

based on the forecasts from models in the set A, yτ  de-
notes the actual observation, and µ represents a positively 
oriented proper scoring rule. The difference in µ reflects 
the extent to which the component models contribute 
to the accuracy of the ensemble. A positive value of φiτ
indicates that, on average across all coalitions of models, 
including the ith forecaster in the ensemble construction 
produces improved ensemble predictions. On the other 
hand, a negative value of φiτ  means that including the ith 
forecaster in ensemble construction degrades ensemble 
prediction performance on average.

The average of importance metrics of model i, φiτ ’s, 
across all tasks is the overall model importance metric of 
the model i: 

Φ(i) =
1

|T |

∑
τ∈T

φiτ , (7)

where T  represents a collection of all possible forecasting 
tasks, and |T | indicates its cardinality.

We note that the weight for a subset in Eq. (6) is 
calculated in the same manner as in the Shapley value 
formula in Eq. (5) that is the weighted average over all 
possible permutations of coalitions. In this formulation, 
the weight depends on the subset size. The rationale 
behind this approach is that as more models are involved, 
the marginal contribution of an additional model tends to 
decrease, since new models are more likely to provide re-
dundant information in the ensemble. However, alterna-
tive weighting schemes are possible. For example, Adiga 
et al. (2023) used equal weights to all subsets regardless 
of their size, meaning that the importance metric is an 
evenly weighted average of the marginal contribution 
over the subsets.

2.3.2. Leave one model out (LOMO)
In addition to the Shapley value analysis using ‘‘all 

subsets", we measure the ensemble forecast performance 
when a single model is removed from the ensemble to 
see how much that component model contributes to 
improving the ensemble accuracy. Let S−i denote the set 
of all models excluding model i, i.e., S−i

= {1, . . . , n} \ {i}, 
where i = 1, 2, . . . , n. Then, F S−i  represents the ensemble 
forecast built based on the forecasts from models in the 
set S−i. That is, we remove the ith forecaster from the en-
tire set of n individual forecasters and create an ensemble 
from the rest. Similarly, F S−i

∪{i} represents the forecast 
from an ensemble model that includes all n individual 
forecasters. The importance metric of the component 
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forecaster i for a single task τ  is measured by

φiτ = µ(F S−i
∪{i}

τ , yτ ) − µ(F S−i

τ , yτ ). (8)

2.4. Decomposition of importance metric measured by the 
LOMO algorithm based on point predictions

In this section, we discuss components of importance 
metrics measured by the LOMO algorithm in the con-
text of point predictions and their mean ensemble, which 
serve as a tractable starting point before extending to 
probabilistic forecasts.

We use the positively oriented squared prediction er-
ror (−SPE) to assess the accuracy of the predicted values, 
since −SPE facilitates a more intuitive interpretation of 
the resulting importance metric: a positive score indi-
cates a beneficial impact on ensemble accuracy, while a 
negative score reflects a detrimental impact.

For n point forecasts ŷ1, ŷ2, . . . , ŷn and the actual out-
come y, the importance metric of model i is calculated 
by subtracting the negative SPE of the ensemble forecast 
made from the predictions of all models except model i
from that of the ensemble forecast based on predictions 
from all n models, written as

φi = −

⎛⎝y −
1
n

n∑
j=1

ŷj

⎞⎠2

+

⎛⎝y −
1

(n − 1)

∑
j̸=i

ŷj

⎞⎠2

(9)

= −
1
n2 e

2
i −

2
n2

∑
j̸=i

eiej +
2n − 1

[n(n − 1)]2

⎛⎜⎜⎝∑
j̸=i

e2j + 2
∑
j̸=i
j<k

ejek

⎞⎟⎟⎠ ,

(10)

where ej indicates the prediction error between y and the 
predicted value ŷj from model j (j = 1, 2, . . . , n). Details 
of the process leading to Eq. (10) from Eq. (9) are available 
in the supplementary materials (see Supplemental Section 
2).

The expected score is given as 

E(φi) = −
1
n2 ESPE(Ŷi) +

2n − 1
[n(n − 1)]2

∑
j̸=i

ESPE(Ŷj)

−
2
n2

∑
j̸=i

E(eiej) +
2(2n − 1)
[n(n − 1)]2

∑
j̸=i
j<k

E(ejek).
(11)

The expected importance metric of model i consists of 
two kinds of terms. The ESPE terms capture the accuracy 
of the individual models. The first term shows that the 
expected importance of model i is lower when its ESPE 
is large, while the second term shows it is lower when 
the combined ESPE of the other models is small. The 
terms involving the product of prediction errors examine 
how two models’ predictions relate to each other and to 
the actual observation. If the product of their errors is 
negative, it means those models’ predictions are on op-
posite sides of the actual value (one overestimates while 
the other underestimates). The third term measures how 
much model i helps to correct the errors made by the 
other models; as the combined expected correction in-
creases, the expected importance of model i increases. 
5

The last term indicates that when the forecast errors of 
different models are highly similar, model i is expected 
to be more important.

It is worth noting that while our decomposition is 
closely related to that from Brown et al. (2005) (see de-
tails in Section 2.1 of the supplement), our decomposition 
directly reveals that model i is rewarded if it is not corre-
lated with others and if the other models are correlated 
with each other. We note that under the assumption of 
unbiased forecasts, the expected product of the errors 
corresponds to the covariance of the errors.

2.5. Simulation studies

In these simulation studies, we show that the de-
composition insights developed in the point forecast set-
ting remain applicable to probabilistic forecasts. We then 
explore the effect of bias and dispersion of a compo-
nent model’s predictive distribution on the importance 
of that model using the mean ensemble method in the 
LOMO algorithm setting. We focused on LOMO in these 
experiments because it closely aligns with the theoretical 
framework in Section 2.4 and is simple to interpret.

We created three simulation scenarios to assess model 
importance. The first two scenarios investigate model im-
portance using component point forecasts and probabilis-
tic forecasts with varying degrees of bias (Section 2.5.1). 
The third scenario investigates model importance with 
probabilistic forecasts with misspecified dispersion (Sec-
tion 2.5.2). We assume that the truth values follow the 
standard normal distribution

Yτ ∼ N(0, 1), for all τ ∈ T ,

where T = {1, . . . , 1000}. For each of the probabilistic 
scenarios, we use 23 quantiles to represent the forecast 
distributions at the same quantile levels as in the data 
set used in the applications (see Section 3.1). We calculate 
the importance metric for each model based on individual 
observations, using the negative SPE for point forecasts 
and the negative WIS for quantile forecasts. As mentioned 
in Section 2.4, we adopt a positive orientation for a more 
straightforward interpretation, so that larger values re-
flect a more beneficial effect on the ensemble accuracy. 
The overall model importance is then taken as the average 
over |T | = 1000 replicates, which approximates the 
expected importance metric.

2.5.1. Setting A: Relationship between a component fore-
caster’s bias and importance

For the first scenario, we consider the following three-
point forecasts: 

ŷ1 = −1, ŷ2 = −0.5, ŷ3 = b, (12)

and in the second scenario, we assume that all three com-
ponent forecasters produce normally distributed forecasts 
as follows: 

F1,τ = N(−1, 1), F2,τ = N(−0.5, 1), F3,τ = N(b, 1),

(13)
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Fig. 2. Expected importance of three forecasters as a function of the prediction/bias of forecaster 3 in simulation settings: (a) ŷ1 = −1, ŷ2 = −0.5, 
and ŷ3 = b based on the negative SPE, (b) F1,τ = N(−1, 1), F2,τ = N(−0.5, 1), and F3,τ = N(b, 1) based on the negative WIS, where τ = 1, . . . , 1000. 
The data generating process is N(0, 1). The expected importance metrics were calculated and averaged over 1000 replicates of the forecasting 
experiments conducted at each value of b, incremented by 0.05 from −1 to 3.
 

where τ  denotes the index of a generic replicate, with τ =

1, . . . , 1000. With the probabilistic component forecasts 
in Eq. (13), the ensemble forecast distribution is Fτ =

N ((b − 1.5)/3, 1). Note that the ensemble prediction is 
unbiased when b = 1.5. We changed the value of b
from −1 to 3 in increments of 0.05 to observe how the 
importance of model 3 changes in both scenarios. Note 
that the point predictions correspond to the means of the 
probabilistic forecasters.

The simulation results show that the importance met-
ric of each forecaster matches the calculation derived in 
Eq. (11) (Fig.  2(a)). Additionally, the general patterns of 
importance metrics observed for the three probabilistic 
forecasters closely align with the patterns seen with the 
point forecasters (Fig.  2(b)).

In both settings, the forecaster that produces the least 
biased forecast achieves the highest importance metric 
when all three forecasters have negative biases (i.e., bi-
ases in the same direction). However, when forecaster 
3 has a small positive bias, unlike the other forecasters, 
it becomes the most valuable component model in the 
accurate ensemble creation, as it serves to correct the 
negative bias of the other component models. If forecaster 
3 has a large bias (b ≥ 2), then, although it is the 
only model biased in the opposite direction, forecaster 1 
becomes the most important contributor to the ensemble. 
This is because forecaster 1 plays a more considerable role 
in offsetting that large bias compared to forecaster 2.

2.5.2. Setting B: Relationship between component forecaster 
dispersion and importance

In this simulation scenario, there are three probabilis-
tic forecasts, each equal to a normal distribution with 
mean 0 and a different standard deviation:
F = N(0, 0.52), F = N(0, 0.72), F = N(0, s2),
1,τ 2,τ 3,τ

6

where τ  denotes the index of a generic replicate, with 
τ = 1, . . . , 1000. In this setup, both forecasters 1 and 2 
have predictive probability distributions that are under-
dispersed relative to the distribution of the data-generating
process, which is N(0, 12). With these component fore-
casts, the standard deviation of the ensemble forecast 
distribution is calculated as (0.5 + 0.7 + s)/3 (see details 
in Section 3 of the supplement). Note that the ensemble 
is correctly specified when s = 1.8. We changed s, the 
standard deviation of the forecast distribution produced 
by forecaster 3, from 0.1 to 3 in increments of 0.05.

Fig.  3 plots the expected or average importance met-
rics for the three forecasters as a function of the value 
of s. If the standard deviation of forecaster 3’s predictive 
probability distribution is less than or equal to 0.5 (i.e., 
s ≤ 0.5), then including that forecaster in the ensemble 
construction makes the ensemble’s probabilistic forecast 
distribution narrower than not including that forecaster. 
This would make the ensemble’s prediction very different 
from the truth, resulting in the forecaster having the low-
est importance metric among all models. Starting from 
s = 0.7, forecaster 3 becomes the most important model, 
as the standard deviation of the ensemble’s forecast dis-
tribution with that model included approaches that of 
the truth distribution more closely than the ensemble 
without it, as s increases. For s ≥ 1, the predictions of 
F3 become more and more overdispersed as s grows, and 
this large variance brings the dispersion of the ensem-
ble close to the truth; however, beyond a certain point, 
the ensemble predictions become more dispersed than 
the truth. Thus, forecaster 3 maintains its top ranking 
in importance until s reaches approximately 2.4. There-
after, the ensemble formed without forecaster 1 shows 
high forecast dispersion, leading forecaster 1 to have the 
highest importance metric among all models.
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Fig. 3. Expected importance of three forecasters as a function of dispersion of forecaster 3 in the simulation setting: F1,τ = N(0, 0.52), F2,τ =

N(0, 0.72), and F3,τ = N(0, s2) based on the negative WIS, where τ = 1, . . . , 1000. The data generating process is N(0, 1). The expected importance 
metrics were calculated and averaged over 1000 replicates of the forecasting experiments conducted at each value of s, incremented by 0.05 from 
0.1 to 3.
3. Application

In this application, we used probabilistic forecasts of 
COVID-19 deaths in the United States to evaluate each 
component model’s contribution to probabilistic ensem-
ble forecasts produced by the mean ensemble method. In 
a case study (Section 3.2), we used the LOMO measure to 
provide clearer illustrations of the key intuitive insights, 
as LOMO offers more straightforward interpretability than 
LASOMO. A more extensive application is presented in 
Section 3.3, where both LASOMO and LOMO algorithms 
were applied and compared.

The code used for loading data and conducting all 
analyses and simulations is archived on Zenodo1 for re-
producibility. The latest version of the associated code and 
data are available on GitHub.2

3.1. Data

The forecast data employed in this analysis were ob-
tained from the US COVID-19 Forecast Hub, which col-
lected short-term quantile forecasts of COVID-19 deaths 
from various models developed by academic, industry, 
and independent research groups, from its launch in April 
2020 (Cramer et al., 2022) through April 2024. The sub-
mitted forecasts were provided using 23 quantiles (0.01, 
0.025, 0.05, 0.10, 0.15, . . . , 0.90, 0.95, 0.975, 0.99). The 
death data on COVID-19 from Johns Hopkins University 
Center for Systems Science and Engineering (JHU-CSSE) 
were used as the ground truth data (Dong et al., 2020).

1 https://doi.org/10.5281/zenodo.17954018
2 https://github.com/mkim425/replication_model-importance
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3.2. Case study: Relationship between importance metric 
and WIS with data for deaths in massachusetts in 2021

Our first analysis is a small case study designed to in-
vestigate the relationship between model importance cal-
culated with the leave-one-model-out (LOMO) algorithm 
and model accuracy measured by the negative WIS. The 
forecasts analyzed were a subset of all forecasts from the 
Forecast Hub, including only 4-week-ahead forecasts of 
new deaths in Massachusetts for every week in 2021. The 
only models included were those that had made real-time 
forecasts for every week in 2021, to avoid complications 
arising from missing forecasts. We also excluded models 
that were ensembles of other models in our pool. This led 
to a set of 9 individual models. In building ensemble mod-
els, an equally weighted mean was used at each quantile 
level.

In Massachusetts in 2021, the importance metrics of 
component models were correlated with model accuracy 
as measured by −WIS. Specifically, the more accurate 
a model’s predictions were on average (as the value of 
negative WIS increases, it indicates higher accuracy), the 
higher the importance that model had (larger values in-
dicate more important forecasts) (Fig.  4). However, in 
certain weeks, there are still models with high importance 
metrics despite low accuracy (i.e., low negative WIS), sug-
gesting that other factors determine a component model’s 
importance. An example is the forecasts with a target end 
date of December 25, 2021, where the CovidAnalytics-
Delphi model was the most important contributor to the 
ensemble. Still, as measured by negative WIS, it was also 
the least accurate for that forecast task (Fig.  5(a)). This 
is because, while this model had a large positive bias, it 
was the only one to show a bias in that direction on this 

https://doi.org/10.5281/zenodo.17954018
https://github.com/mkim425/replication_model-importance
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Fig. 4. Model importance versus negative WIS by model for all weeks in 2021. Each triangle represents a pair of negative WIS (x-axis; larger values 
indicate more accurate forecasts) and an importance metric (y-axis; larger values indicate more important forecasts) for a week in 2021. Solid black 
circles represent negative WIS and importance metric pairs evaluated for the one week ending December 25, 2021 (see more details in Fig.  5). The 
horizontal dashed lines indicate the value of zero. The importance of an individual model as an ensemble member tends to be positively correlated 
with the value of negative WIS; that is, the importance metric is positively correlated with the model’s prediction accuracy.
particular week (Fig.  5(b)). That bias made this model an 
important counterweight to the other models, and adding 
it to an ensemble shifts the predictive median towards the 
observed data. This illustrates that component forecasts 
that are not accurate relative to other forecasts but offer 
a unique perspective can still play an important role in an 
ensemble.

3.3. Importance metrics measured by different algorithms

For this application, out of a total of 56 non-ensemble 
individual models that submitted forecasts of COVID-19 
deaths to the Forecast Hub, we chose 10 models that sub-
mitted over 90% of the possible individual predictions for 
deaths across 50 states in the US and 1 through 4 horizons 
for 109 weeks from November 2020 to November 2022 
(Table  1).

As mentioned earlier, we took an equally weighted 
mean of the models’ quantile forecasts in the ensemble 
construction (see Section 2.2).If a model did not submit 
forecasts, the model’s score was stored as ‘NA’. When 
compiling the scores, the ‘NA’ values were processed in 
three ways: excluded from the analysis, substituted with 
the worst score for the combination of forecast date, lo-
cation, and horizon, or substituted with the average score 
for the same combination. Here, we present the results 
obtained using the most conservative approach, in which 
‘NA’ values were replaced with the worst scores. Results 
from other approaches show patterns similar to those 
observed below. The details are in the supplement (see 
Supplemental Section 4).
8

Overall, the importance metrics measured through the 
two computational algorithms were highly correlated in 
the positive direction with the negative WIS (Fig.  6). That 
is, on average, the more accurate a model was by −WIS, 
the more important a role it played in contributing to the 
accuracy of an ensemble.

In certain instances, the rankings of models by −WIS
or by importance metrics differed. For example, the
Karlen–pypm and BPagano–RtDriven models were the 
top two models by −WIS and by all importance metrics. 
Although BPagano-RtDriven showed higher accuracy by 
−WIS, Karlen-pypm showed greater importance on aver-
age, despite being substantially penalized for its missing 
values by assigning the worst score per the corresponding 
task for each metric, while BPagano-RtDriven was not pe-
nalized. This suggests that the Karlen-pypm model added 
more value than the BPagano-RtDriven model in its ability 
to contribute to ensemble predictions meaningfully. We 
also observe that USC-SI_kJalpha, which had a worse 
negative WIS, showed greater importance than MOBS-
GLEAM_COVID (Table  1, Fig.  7), where the penalties in-
curred by both models were comparable. This implies that 
even models with low accuracy, as measured by −WIS, 
can provide a unique perspective that distinguishes them 
from other models as standalone predictive models and 
thereby further improve the average ensemble.

Factors not captured by −WIS but that influence the 
importance metric can be explained by model similarity. 
In Eq. (11), the importance metric is decomposed into in-
dividual forecast skills and the similarities of forecast er-
rors from different component models for point forecasts. 
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(a) 

 

(b) 

Fig. 5. (5(a)) Model importance of each model versus negative WIS in Massachusetts on the target end date 2021-12-25. CovidAnalytics-DELPHI is 
the most important and also the least accurate by −WIS. (5(b)) Predictive medians and 95% Prediction intervals (PIs) of individual forecasts (top) 
and ensemble forecasts built leaving one model out (bottom) on target end date 2021-12-25. For example, the lines on the far left indicate PI for 
the CovidAnalytics-DELPHI model on the top panel and PI for the ensemble created without the CovidAnalytics-DELPHI model on the bottom panel. 
None(ensemble of all) represents an ensemble model built on all nine individual models. In each PI, the endpoints indicate 0.025 and 0.975 quantiles, 
and the mid-point represents the 0.5 quantile (predictive median). The horizontal dashed lines represent the eventual observation. The ensemble 
without CovidAnalytics-DELPHI is the only ensemble model with a point estimate below 150. The models on the x-axis are listed in order of model 
importance.
This concept can also be applied to probabilistic quantile-
based forecasts, as demonstrated in Section 2.5.1. This 
similarity is understood in terms of how often the predic-
tion errors fall ‘‘on the same side" of the observation and 
how much a particular model corrects errors from other 
models.
9

In general, the importance metrics for different com-
putational algorithms (LASOMO/LOMO) are highly corre-
lated with each other (Fig.  6). The relative ordering of 
models is not particularly sensitive to this choice. How-
ever, the importance metric calculated in LOMO, denoted 
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Table 1
Summary of negative WIS and importance metrics (Φ), sorted by −WIS. The number of predictions represents the total forecasts made by each 
model, with the percentage of the total number of predictions shown in parentheses, for the 50 US states across 1–4 week horizons from November 
2020 to November 2022 (109 weeks). All scores were averaged across all forecast dates, locations, and horizons. In the importance metric notation 
(Φ), the superscript indicates the algorithm method; Φ lomo represents the average importance metric based on leave one model out algorithm and 
Φ lasomo represents the average importance metric based on leave all subsets of models out algorithm. The best value in each column is highlighted 
in bold.
 Model −WIS Φ lasomo Φ lomo Number of predictions (%) 
 BPagano-RtDriven −40.2 2.81 0.71 21800 (100)  
 Karlen-pypm −41.2 3.11 0.92 20400 (93.6)  
 GT-DeepCOVID −42.8 1.87 0.17 20724 (95.1)  
 MOBS-GLEAM_COVID −45.8 1.06 −0.21 20596 (94.5)  
 CU-select −47.3 1.64 0.24 21000 (96.3)  
 RobertWalraven-ESG −49.8 0.94 −0.09 19992 (91.7)  
 USC-SI_kJalpha −51.7 1.23 0.21 20900 (95.9)  
 COVIDhub-baseline −52.1 0.10 −0.62 21800 (100)  
 UCSD_NEU-DeepGLEAM −52.6 −0.13 −0.70 20596 (94.5)  
 PSI-DRAFT −71.7 −1.94 −1.00 19988 (91.7)  
Fig. 6. Relationship between summary metrics computed across the entire evaluation period. In the importance metric notation (Φ), the superscript 
indicates the algorithm method; Φ lomo represents the average importance metric based on leave one model out algorithm and Φ lasomo represents the 
average importance metric based on leave all subsets of models out algorithm. One black dot corresponds to one model, with the position indicating 
the average scores across the entire evaluation period for the metrics in the row and column of the plot matrix.
 
(a) 

  
(b) 

 

Fig. 7. Comparison of model ranks as measured by the negative WIS against different importance metrics: (a) −WIS vs. Φ lasomo and (b) −WIS vs. 
Φ lomo . Solid lines indicate cases where the importance metric rank is higher than the negative WIS rank, dashed lines indicate lower ranks, and 
dotted lines represent equal ranks.
10
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by Φ lomo, is consistently lower than the importance met-
ric calculated in LASOMO, denoted by Φ lasomo, for each 
model. Notably, many models that had positive scores 
in the LASOMO approach exhibit negative scores in the 
LOMO approach (Table  1). This can be interpreted as 
meaning that it is harder for a model to add value when 
all other models are already in the mix. It is because 
Φ lomo represents the model’s marginal contribution to 
the subset that includes all the other models, and it is 
considered only a part of Φ lasomo.

As a complementary analysis, we also explored the 
variability of LOMO metrics across different subset sizes, 
which illustrates their influence on LASOMO metrics (see 
Supplement, Section 5). We found that subsets with a 
small number of models sometimes exhibit high variance 
in the LOMO metrics, potentially leading to instability 
in the LASOMO metrics. On the other hand, the LOMO 
model’s importance scores for a given model are generally 
stable when one or two other models are removed from 
the pool.

4. Discussion

We have developed an importance metric based on 
the Shapley value concept. While earlier studies applied 
this concept to measure the contribution of individual 
predictors of a predictive model (Borup et al., 2024; Giu-
dici & Raffinetti, 2021) or ensemble component models 
(Adiga et al., 2023; Pompigna & Rupi, 2018) in terms 
of point prediction accuracy, we have explored the con-
cept in the context of probabilistic ensemble forecasts 
of epidemics. We also provided a detailed understand-
ing of the accuracy and similarity decomposition in the 
model importance metric, revealing the conditions under 
which a component model is rewarded in the presence 
of other models. This highlights a key distinction from 
the ambiguity decomposition proposed by Brown et al. 
(2005).

The Weighted Interval Score (WIS), a proper scoring 
rule designed for quantile forecasts, was utilized by the 
US COVID-19 Forecast Hub and several other collaborative 
forecasting challenges (Howerton et al., 2023; Mathis, 
et al., 2024; Sherratt, et al., 2023). While WIS is effective 
in measuring each model’s performance independently, 
it does not offer a complete picture of a model’s con-
tribution in an ensemble setting. The importance metric 
approaches we introduce in this work provide insights 
that WIS cannot capture, as it relies on predictions from 
other models. No matter how accurate a prediction is, if 
its prediction errors are highly similar to those of other 
models, its impact on the ensemble may not be as great 
as that of a model that has lower accuracy but offsets the 
errors of other models. This aspect of importance metrics 
is especially relevant for hub organizations like the US 
CDC, which collect forecasts from a variety of models 
and combine them to generate ensemble forecasts for 
communication with the public and decision-makers (Fox 
et al., 2024).

We proposed two algorithms for assessing model im-
portance: leave-one-model-out (LOMO) and leave-all-
11
subsets-of-models-out (LASOMO). In the LASOMO algo-
rithm, we used permutation-based weights to account for 
how a model’s contribution can vary with ensemble size, 
thereby distinguishing our work from that of Adiga et al. 
(2023), who use an equal-weighting scheme. Notably, 
LOMO is a special case of LASOMO, in which only a single 
subset is considered, namely, all models except the target 
component model. This makes LOMO simple and easy to 
implement and significantly more efficient than LASOMO, 
especially when dealing with many component models. 
However, when the number of component models is 
relatively small (e.g., fewer than 10), LASOMO becomes 
computationally feasible and may be preferred, as it pro-
vides a more comprehensive evaluation by considering all 
possible combinations of component models.

This study has several limitations. While we used the 
widely adopted mean ensemble method in the applica-
tion, it is often vulnerable to individual forecasters with 
outlying or poorly calibrated predictions, which can in-
crease forecast uncertainty or decrease overall ensem-
ble reliability. Additionally, our use of Shapley values, 
while providing insights, was constrained by underly-
ing assumptions, such as assigning the empty set a zero 
value in the characteristic function, that were not fully 
met in our setting. Thus, the obtained values may not 
precisely represent Shapley values but rather provide an 
informal approximation. The computational cost of imple-
menting the LASOMO algorithm is also a challenge. As the 
number of models increases, computational time grows 
exponentially because 2n subsets must be considered for 
n models in the Shapley value calculation. Furthermore, 
it is almost impossible to have all models consistently 
submit their predictions over a given period when there 
are many participating models, so it is inevitable to have 
missing data for unsubmitted predictions. Consequently, 
the Shapley value can be unstable or misleading, as it is 
highly sensitive to such missingness. Because the choice 
of how to handle these missing values during scoring can 
lead to variations in the resulting importance metrics and 
rankings of the component models, careful consideration 
is required when selecting a handling method. Further 
exploration of this issue is needed for comprehensive 
guidelines.

We also envision several directions for future research. 
A naïve forecast could serve as a baseline model, replacing 
the forecast associated with the empty set of component 
models, which we excluded in this study. Another po-
tential direction is to explore the application of model 
importance measures in the context of ensemble forecasts 
that assign weights to individual component models. In 
this case, more deliberate strategies should be explored 
to account for the different levels of consistency and 
reliability across models in the weighting scheme (Ray 
et al., 2023). Moreover, the components of the LASOMO 
metric computed using subsets of a few models some-
times exhibit high variance. While this is less of an issue 
for LOMO metrics when a reasonable number of models 
are available, several approaches could be explored to re-
duce the impact of high-variance metrics and outliers. We 
could refine the LASOMO framework to develop variance-
adjusted versions of the metric. It could also be valuable 
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to explore ways to extend the Rank Graduation Accuracy 
(RGA) metrics used in the point predictions (Giudici & 
Raffinetti, 2025) in the context of a probabilistic forecast-
ing setting. Such a probabilistic implementation of RGA 
could improve robustness, as it would be less affected by 
outliers.

5. Conclusions

Despite the rising popularity of ensemble models, there
is currently a lack of comprehensive evaluation metrics 
to assess the individual contributions of each model. Tra-
ditional practice involves setting up a leaderboard to 
independently evaluate the accuracy and effectiveness of 
individual prediction models using appropriate scoring 
rules. Our proposed importance metric addresses this gap 
by providing a novel, distinctive metric for assessing the 
role of each model within the ensemble, adding a unique 
dimension to the assessment of forecasting models.

This paper presents a decomposition of the model 
importance metric, which mathematically demonstrates 
how an individual model’s accuracy and its interactions 
with other component models influence the measure. 
Simulation studies support this theoretical framework. In 
a case study, its application is illustrated in a real-world 
setting. These analyses provide both formal and intuitive 
explanations of the realized values of the model impor-
tance metrics and highlight how the model importance 
metrics can be used to understand how individual mod-
els have improved or degraded predictive accuracy. An 
extensive application further highlights the relationship 
between a widely used accuracy metric and our model 
importance metric.

The implication of this work is that our proposed im-
portance metric provides novel insights, offering new in-
formation beyond traditional accuracy metrics. Our method
provides a solid theoretical basis and clear criteria for 
quantifying a component model’s contribution to ensem-
ble performance. Moreover, leveraging the importance 
metric can incentivize original modeling approaches,
thereby fostering a diverse landscape of perspectives amon
modelers and ultimately enriching the forecasting ecosys-
tem.
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