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ABSTRACT

Combining predictions from multiple models into an ensemble is a widely used practice across many fields with demonstrated

performance benefits. Popularized through domains such as weather forecasting and climate modeling, multi-model ensembles

are becoming increasingly common in public health and biological applications. For example, multi-model outbreak forecasting

provides more accurate and reliable information about the timing and burden of infectious disease outbreaks to public health
officials and medical practitioners. Yet, understanding and interpreting multi-model ensemble results can be difficult, as there are
a diversity of methods proposed in the literature with no clear consensus on which is best. Moreover, a lack of standard, easy-to-use
software implementations impedes the generation of multi-model ensembles in practice. To address these challenges, we provide

an introduction to the statistical foundations of applied probabilistic forecasting, including the role of multi-model ensembles.

We introduce the hubEnsembles package, a flexible framework for ensembling various types of predictions using a range of

methods. Finally, we present a tutorial and case-study of ensemble methods using the hubEnsembles package on a subset of

real, publicly available data from the FluSight Forecast Hub.

1 | Introduction

Predictions of future outcomes are essential to planning and deci-
sion making, yet generating reliable predictions of the future is
challenging. One method for overcoming this challenge is com-
bining predictions across multiple, independent models. These
combination methods (also called aggregation or ensembling)
have been repeatedly shown to produce predictions that are more
accurate [1, 2] and more consistent [3] than individual models.

Because of the clear performance benefits, multi-model ensem-
bles are a widely used statistical tool across fields, including
weather forecasting [4], climate modeling [5], and economics [6].
In the last decade, the number of multi-model ensemble predic-
tions generated and used in real time for public health planning
and response has grown rapidly.

In particular, predicting infectious disease outbreaks and antic-
ipating the effects of potential interventions has demonstrated

Li Shandross and Emily Howerton contributed equally to this study.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the

original work is properly cited.

© 2026 The Author(s). Statistics in Medicine published by John Wiley & Sons Ltd.

Statistics in Medicine, 2026; 45:€70333
https://doi.org/10.1002/sim.70333

10f22


https://doi.org/10.1002/sim.70333
https://orcid.org/0000-0002-0639-3728
https://orcid.org/0000-0003-4035-0243
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/sim.70333
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsim.70333&domain=pdf&date_stamp=2026-01-22

utility for public health officials and medical practitioners.
Underlying these predictions are mathematical models that use
historical disease incidence data, including cases, hospitaliza-
tions, and deaths, to make probabilistic predictions of inci-
dence in the future [7-11]. Given the performance benefits of
multi-model ensembles, it is becoming increasingly common
to convene multiple modeling teams into a collaborative “hub”
[12], where each team generates independent predictions that are
aggregated to collectively produce an ensemble. For example, this
approach has been used to make real-time, multi-model predic-
tions for seasonal influenza [10, 13], dengue [14], West Nile virus
[15], and more recently SARS-CoV-2 [16-18].

Generating multi-model ensembles or interpreting the resulting
predictions depends on understanding the underlying statistical
methodology. There are many proposed methods for generating
ensembles, and these methods differ in at least one of two ways:
(1) the function used to combine or “average” predictions, and
(2) how predictions are weighted when performing the combi-
nation. A few methodological papers have discussed theory of
multi-model ensembles and tested various ensembling methods
in public health applications specifically [19-25], yet there is
no consensus on which method should be favored. There are
software packages that support various aspects of multi-model
ensembling [26-29]. However, these packages only support a
subset of methods and prediction types, illustrating the need for
standard, easy-to-use implementations of common methods.

Here, we provide an introduction to the statistical foundations
of multi-model ensembles in applied probabilistic forecasting
(Section 2). In addition, to improve accessibility, reproducibility,
and interoperability, we have developed a comprehensive R pack-
age hubEnsembles that implements these methods (Section 3).
The hubEnsembles package provides a flexible framework for
generating ensemble predictions from multiple models across
a range of common methods and prediction types, including
both discrete and continuous outcomes. It is situated within the
broader “hubverse” collection of open-source software and data
tools to facilitate the development and management of collabora-
tive modeling exercises [30]. These two factors together, a simple
implementation framework across methods and integration with
hubverse data standards and tools, make hubEnsembles acces-
sible and easy to use.

Finally, we present a basic demonstration of multi-model ensem-
ble generation and interpretation (Section 4), and a more
in-depth analysis using real influenza forecasts (Section 5).
The case studies demonstrate the utility of hubEnsembles to
support a range of prediction types, and together motivate a
discussion and comparison of the various methods (Section 6).
While the case studies focus on infectious disease applications,
the software and tools presented are general and could be used
for applications in other areas of biomedical and public health
research, or other domains. By reviewing multi-model ensemble
methodology and synthesizing these methods into an easy-to use
implementation, this tutorial provides guidance on understand-
ing, interpreting, and implementing multi-model ensembles.

2 | How to Generate a Multi-Model Ensemble

In this section, we provide an overview of the process to generate
a multi-model ensemble, including an outline of key statistical

concepts in probabilistic forecasting, and an overview of the
classes of methods that are typically used for generating a
multi-model ensemble. See Box 1 for a glossary of key terms and
definitions.

2.1 | Key Statistical Concepts in Forecasting
Generating an ensemble requires multiple predictions to be com-
bined, and a combination method for calculating the ensemble
from these predictions (Figure 1). These predictions will often be
produced by different statistical or mathematical models, and the
output from these models (referred to as “model output” from
here on) will vary based on the setting. For example, some pub-
lic health questions, such as short-term resource allocation, may
depend on a forecast of public health outcomes weeks into the
future, whereas longer-term decisions about vaccination sched-
ules may require projections months into the future across multi-
ple possible scenarios. Some intervention decisions, such as quar-
antine and isolation policy, may depend on estimates of key bio-
logical parameters such as the generation interval for an infec-
tious pathogen. Throughout, we will use the general term “pre-
diction” to encapsulate all such outcomes that could be mod-
eled, encompassing short-term forecasts, scenario projections,
and parameter estimates. Predictions can also capture varying
degrees of uncertainty in the outcome. A point prediction gives a
single estimate of an outcome while a probabilistic prediction pro-
vides an estimated probability distribution over a set of outcomes.
In either case, the basic steps required to generate an ensemble
are the same.

2.2 | Mathematical Definitions and Properties
of Ensemble Methods

Here, we use N to denote the total number of individual pre-
dictions that the ensemble will combine. For example, if predic-
tions are produced by different models, N is the total number
of models that have provided predictions. Individual predictions
will be indexed by the subscript i. Optionally, one can calculate
an ensemble that uses a weight w, for each prediction; we define
the set of model-specific weightsasw = {w;|i € 1, ..., N }.Infor-
mally, predictions with a larger weight have a greater influence
on the ensemble prediction, though the details of this depend on
the ensemble method (described further below).

Then, for aset of N point predictions, p = {p;|i € 1, ..., N},each
from a distinct model i, an ensemble of these predictions is

pg =C(p,w)

using any function C and any set of model-specific weights w.
For example, an arithmetic average of predictions yields py =
Zi’il p;w;, where the weights are non-negative and sum to 1. If
w; =1/ N for all i, all predictions will be equally weighted. More
complex functions for aggregation are also possible, such as a
(weighted) median or geometric mean.

For probabilistic predictions, there are two commonly used
classes of methods to average or ensemble multiple predic-
tions: quantile averaging (also called a Vincent average [31])
and probability averaging (also called a distributional mixture
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FIGURE1 | Overview of process to generate a multi-model ensemble. Predictions, p; are generated from N independent models (step 1). Then
those predictions, p = {p;|i €1, ..., N}, are combined with some function, C, and set of weights, w = {w;,|i € 1, ..., N }. This figure illustrates example

probabilistic forecasts for incident influenza hospitalizations, where the median (line) and 90% prediction interval are shown. In this case, the ensemble

is constructed using the linear pool method (F; o p(x)).

or linear opinion pool [32]) [33]. To define these two classes
of methods, let F(x) be a cumulative density function (CDF)
defined over values x of the target variable for the prediction,
and F~1(0) be the corresponding quantile function defined over
quantile levels 6 € [0, 1]. Throughout this article, we may refer to
x as either a “value of the target variable” or a “quantile” depend-
ing on the context, and similarly we may refer to 8 as either a
“quantile level” or a “(cumulative) probability”. Additionally,
we will use f(x) to denote a probability mass function (PMF)
for a prediction of a discrete variable or a discretization (such as
binned values) of a continuous variable.

The quantile average combines a set of quantile functions, Q =
{F,.‘1(0)|i €1, ..., N}, with a given set of weights, w, as

N
F3'(0) = Co(Qw) = Y w,F1(0).
i=1

This computes the average value of predictions across different
models for each fixed quantile level 6. For a normal distribution
or any distribution with a location and scale parameter, the result-
ing quantile average will be the same type of distribution, with
location and scale parameters that are the average of the location
and scale parameters from the individual distributions (Figure 2,
panel B). In other words, this method interprets the predictive
probability distributions that are being combined as uncertain
estimates of a single true distribution. It is also possible to use

other combination functions, such as a weighted median, to com-
bine quantile predictions.

The probability average or linear opinion pool (LOP, or simply
linear pool) is calculated by averaging probabilities across predic-
tions for a fixed value of the target variable, x. In other words, for
asetof CDFs F = { F,(x)|i € 1, ..., N} and weights w, the linear
pool is calculated as

N
Frop(x) = Crop(Fow) = ) w,F(x).

i=1

For a set of PMF values, { f;(x)|i € 1, ..., N}, the linear pool can
be equivalently calculated as f; ,p(x) = Zfi LW, f;(x). Statistically
this amounts to a mixture of the probability distributions, and
the resulting probability distribution can be interpreted as one
where the constituent probability distributions represent alter-
native predictions of the future, each of which has a probability
w; of being the true one. If individual samples (trajectories) from
the predictive distributions are collected, the LOP is equivalent
to collecting samples across all models and pooling them into a
single distribution. For a visual depiction of these equations, see
Figure 2 below.

The different averaging methods for probabilistic predictions
yield different properties of the resulting ensemble distribu-

tion. For example, the variance of the linear pool is Uio p=
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FIGURE2 | (Panel A)Example predictions from two distributions (/N (100, 10) in purple and N (120, 5) in green) shown as cumulative distribution
functions (CDFs). To ease submission to a hub, the prediction can be summarized at a fixed number of points along the distribution. Here, the solid
points show model output for seven fixed quantile levels (6 = 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.99). The y-axis ticks show each of the fixed quantile levels.
The associated values for each fixed quantile level are shown with vertical lines. (Panel B) Quantile average ensemble, which is calculated by averaging
values for each fixed quantile level (represented by horizontal dashed gray lines). The distributions and corresponding model outputs from panel A are
re-plotted and the black line shows the resulting quantile average ensemble. Inset shows corresponding probability density functions (PDFs). (Panel
C) Linear pool ensemble, which is calculated by averaging cumulative probabilities for each fixed value (represented by vertical dashed gray lines).
The distributions and corresponding model outputs from panel A are re-plotted. To calculate the linear pool in this case, where model outputs are not
defined for the same values (i.e., vertical lines in Panel A do not line up), the model outputs are used to interpolate the full CDF for each distribution
from which predicted cumulative probabilities can be extracted for fixed values (shown with open circles). The black line shows the resulting linear

pool average ensemble. Inset shows corresponding PDFs.

Z[leiaf + Zfilwi(yi — Hpop)*, Where y; is the mean and o7 is
the variance of individual prediction i, and although there is no
closed-form variance for the quantile average, the variance of the
quantile average will always be less than or equal to that of the lin-
ear pool [33]. Both methods generate distributions with the same
mean, po = fijop = Zfil w; ;, which is the mean of individual
model means [33]. The linear pool method preserves variation
between individual models, whereas the quantile average cancels
away this variation under the assumption it constitutes sampling
error [24].

2.3 | Applications in Public Health
and Infectious Disease Outbreaks

Multi-model ensembles have become the gold standard for fore-
casting and prediction efforts that support public health in real
time [12, 34-36]. One prominent domain is forecasting key char-
acteristics of infectious disease outbreaks, including weekly dis-
ease incidence or healthcare demand over future weeks, disease
burden for the entire season, and timing and magnitude of the
outbreak peak [14-16, 23, 37]. Projections of disease outcomes
under multiple possible future scenarios have also been used to
estimate intervention effectiveness to inform policy [38-40], and
it has been proposed to use short-term forecasts of disease inci-
dence to inform vaccine efficacy trials [41]. Standard guidelines
for reporting of prediction efforts in outbreak and public health
settings have also been established [42].

Across a variety of pathogens and outbreak settings, multi-model
ensembles have been shown to produce forecasts that are as good
or better than the individual models that compose the ensemble

[10,13,14,16-19,23]. Notably, the ensemble does not always out-
perform the best model, but typically offers improved consistency
and robustness over individual models [16, 17, 20, 43]. However,
in one instance, a baseline historical average of West Nile Virus
cases in the US outperformed most model predictions, including
the ensemble [15].

Examinations of ensemble methodology in infectious disease
contexts suggest there is not one method that universally per-
forms best. In short-term forecasting settings, a simple linear pool
average of component predictions tends to produce prediction
intervals that are too wide (i.e., suggesting outcomes are more
uncertain than in reality); beta-transformation [44] and dynamic
weighting [45] have been suggested to mitigate this problem.
A median quantile average has been shown to provide similar
performance to a weighted mean in short-term forecasting chal-
lenges, while also offering robustness to changes in performance
across individuals models [25], and was thus used as the pri-
mary ensemble for short-term forecasts of COVID-19 [16, 17].
For longer-term predictions of COVID-19, a trimmed LOP ensem-
ble performed best, as models tended to be more overconfident
in this setting [18]. The number of models submitting real-time
predictions has varied dramatically (from as few as four models
for longer-term predictions of COVID-19 [18] to more than 40
for short-term forecasts of COVID-19 [16]). Research including
applications across influenza and COVID-19 suggests that at least
3 models are needed, with diminishing returns for every model
that is added [46].

The growing body of literature on multi-model ensembles in pub-
lic health domains emphasizes the utility of these approaches

4 0f22

Statistics in Medicine, 2026

85U8017 SUOWILLIOD @A 18810 3|cedl (dde 8y Aq pauenob ae el VO ‘8sN JO Sa|nJ oy Akeid 178Ul UO A8 ]I UO (SUORIPUOD-PUR-SLUB)ALIO" A3 1M ALeIq Ul UO//:SdNY) SUORIPUOD PUe SWie | 8U 8eS *[9202/T0/6Z] Uo Akiqiauljuo A8 ‘snesnyoesse|n JO AISIAIUN A EEE0/ 'WIS/Z00T 0T/I0pAL0D" A8 1M ARe.d 1 jpuluo//:Sdny woly pepeojumod ‘2-T ‘9202 ‘8520.60T



to inform response in real time. Future research on optimizing
ensemble performance for different targets and time horizons
will further improve utility. Moreover, expanding the use of these
methods to other pathogens and countries will enable further
methodological development.

BOX1 | Keywords and definitions: Concepts in statistical
forecasting.

+ Ensemble: the combination of outputs from multiple mod-
els into a single, aggregate prediction

« Forecast: a specific quantified prediction of an observable
event or trend that has yet to be observed, conditional on
data that has been observed up to a specified time.

 Horizon: time frame over which predictions are generated
(e.g., 4 weeks ahead)

« Linear opinion pool: method for ensembling probabilistic
predictions, which treats constituent probability distribu-
tions as alternative predictions of the future. Also called
probability average.

 Scenario projection: estimates of future observations of
future trends conditional on specific assumptions about a
given scenario. Scenarios describe possible future condi-
tions in terms of model parameters that might be varied,
such as transmissibility, vaccine adoption, vaccine effi-
cacy, the emergence of a new variant, etc.

 Prediction: estimate of current or future outcomes, typi-
cally generated from a model. Here, used to encapsulate a
range of outcomes that could be modeled, encompassing
short-term forecasts, scenario projections, and parameter
estimates.

 Point prediction: a prediction represented by one single
estimate, which generally represents a typical or common
future outcome (e.g., a mean or median)

« Probabilistic prediction: a prediction that quantifies
a probability distribution over future outcomes. This
enables quantification of most likely outcomes and the
risk of extreme events.

« Model weighting: a set of real numbers that defines the
relative contribution of each constituent prediction in
the ensemble (e.g., equal weighting or performance-based
weighting).

» Quantile average: method for ensembling probabilistic
predictions, which treats constituent probability distribu-
tions as uncertain estimates of a single true distribution.
Also called Vincent average.

» Quantile level/cumulative probability: the y value in a
cumulative distribution function, representing the cumu-
lative probability of a future value (e.g., 50% cumulative
probability

« Value of the target variable/quantile: the x value in a
cumulative distribution function, or the future values over
which the probability distribution is defined (e.g., incident
hospitalizations)

3 | How to Implement Ensemble Calculations

The methods described in Section 2 are implemented via the
hubEnsembles package in a flexible, easy-to-use framework.
Importantly, hubEnsembles is situated within the broader hub-
verse software infrastructure, which provides data standards and
conventions for representing and working with model predic-
tions [30], including for example, collecting and manipulating
predictions (hubUtils) as well as visualization (hubVis). In
2024-2025, the hubverse supported over a dozen collaborative
modeling hubs used by public health agencies across the globe.
We begin with a short overview of hubverse concepts and con-
ventions that support the process of combining model predic-
tions, supplemented by example predictions provided by the hub-
verse in hubExamples, then explain the implementation of
the two primary ensembling functions included in the package,
simple ensemble () and linear pool (). Box 2 provides
a glossary of key hubverse terms and definitions for reference.

3.1 | Terminology and Data Standards in the
Hubverse

In the hubverse, predictions are always represented in a stan-
dardized tabular format called “model output”, codified by the
model out_ tbl S3classin hubUtils (a package of basic util-
ity functions). Each row represents a single, unique prediction
while the columns provide information about what is being pre-
dicted, its scope, and value. A single model output object can
store and organize many predictions while remaining easy to
parse at a glance, which is particularly useful when collecting
predictions from multiple models to combine into an ensemble.
Any tabular predictions can be transformed into model output
using the as_model out_tbl () function from hubUtils
(see Section 5 for an example).

The model out_tbl class is defined by four standard types of
columns: (i) the model ID, which denotes which model has pro-
duced the prediction; (ii) the task IDs (also referred to as “task
ID variables” or “task ID columns”), which provide details about
what is being predicted; (iii) the model output representation,
which specify the type of prediction and other identifying infor-
mation; and (iv) the value of the prediction itself. While most of
these columns are always required and have standardized column
names, the task ID variables may vary according to the needs of
the modeling hub or modeling task [30].

Table 1 provides an example of model output that stores
short-term forecasts of weekly influenza hospitalizations for dif-
ferent US states and territories. By reading across the table,
we can see that these are quantile predictions (output_type)
of the quartiles (output type ID: otid) from a single model
(model id of “teaml-mod”) for four distinct forecast horizons.
Here, details about the prediction related to modeling task are
represented by the task ID variables Loc (location abbreviation),
ref date (reference date: the “starting point” of the forecasts),
h (horizon: how many weeks into the future, relative to the
ref date), and target (what is being predicted).

As mentioned previously, task ID variables are not fixed in
name, number, or composition to incorporate flexibility in the
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TABLE1 | Example of forecasts for incident influenza hospitalizations, formatted according to hubverse standards.
Model_id Loc ref_date h Target Output_type otid Value
team1-mod MA 2022-12-17 0 wk flu hosp quantile 0.25 514
team1-mod MA 2022-12-17 0 wk flu hosp quantile 0.5 596
team1-mod MA 2022-12-17 0 wk flu hosp quantile 0.75 713
team1-mod MA 2022-12-17 1 wk flu hosp quantile 0.25 563
team1-mod MA 2022-12-17 1 wk flu hosp quantile 0.5 664
team1-mod MA 2022-12-17 1 wk flu hosp quantile 0.75 803
team1-mod MA 2022-12-17 2 wk flu hosp quantile 0.25 469
team1-mod MA 2022-12-17 2 wk flu hosp quantile 0.5 575
team1-mod MA 2022-12-17 2 wk flu hosp quantile 0.75 705
team1-mod MA 2022-12-17 3 wk flu hosp quantile 0.25 324
team1-mod MA 2022-12-17 3 wk flu hosp quantile 0.5 408
team1-mod MA 2022-12-17 3 wk flu hosp quantile 0.75 512

Note: Quantile predictions for the median and 50% prediction intervals from a single model are shown for four distinct horizons. The output_type_id column’s name has been shortened to ot id
for brevity. These predictions are a modified subset of the forecast_outputs data provided by the hubExamples package.

model out tbl class. Different modeling efforts may use dif-
ferent sets of task ID columns with different values to define
their prediction goals, or may simply choose distinct names to
represent the same concept. For example, the date task col-
umn was named ref date above but could easily be called
origin date or forecast date instead. Some standard
examples of task ID variables are available on the hubverse doc-
umentation website [30].

The “model output representation” columns output_type and
output_ type id contain metadata about how the predic-
tions are conveyed. The hubverse data standards require that
these columns are included in a model out tbl. The out-
put_type column defines how a prediction is represented and
may be “mean” or “median” for point predictions, or one of
“quantile”, “cdf”, “pmf”, or “sample” for probabilistic
predictions. The output type id provides additional identi-
fying information for prediction and is specific to the particular
output_type (see Table 2). The last column, value, always
contains the numeric value of the prediction, regardless of out-
put type. Requirements for the values of the output type id
and value columns associated with each valid output type are
summarized in Table 2.

In addition to these six output types mentioned above, other
types of predictions not explicitly defined in the hubverse may be
represented within model output. For example, trajectories may
be encoded using the “sample” output type while predictions of
binary events can be captured using the “pmf” output type.

All output types can summarize predictions from univariate
marginal distributions, for example, for a single location and
time point. The sample output type—which represents randomly
drawn values from a probabilistic predictive distribution—is
unique in that it can additionally represent predictions from joint
predictive distributions. This means that samples may encode
dependence across combinations of multiple values for task ID
variables, for example across multiple locations and/or time
points. One common example is a trajectory that represents a
single model run across all time points, and in such cases collect-
ing predictions as samples can offer benefits [47]. In this case,

rows of sample predictions with the same index (specified by the
output_type_ id)from a particular model may be assumed to
correspond to a single sample from a joint distribution.

For quantile predictions, the output_type id is a numeric
value between 0 and 1 specifying the cumulative probability asso-
ciated with the quantile prediction. In the notation we defined
in Section 2, the output type id corresponds to 6 and the
value is the quantile prediction F~1(8). For CDF or PMF pre-
dictions, the output_type id is the target variable value x
at which the cumulative distribution function or probability
mass function for the predictive distribution should be evalu-
ated, and the value column contains the predicted F(x) or f(x),
respectively.

The hubverse also provides standards for target data (i.e.,
observed data corresponding to each prediction target), which
can be stored in one of two formats: target time series or ora-
cle output. The two tabular representations differ in terms of
columns and purposes. Target time series data is a more tradi-
tional representation of the observed “truth” in a time series for-
mat with minimal columns; this format usually serves as calibra-
tion data for generating forecasts or might be used for visualiza-
tion of predictions. Oracle output, on the other hand, represents
prediction that an “oracle model” would have made had it known
the observed values in advance. This format resembles model out-
put data and is suited for evaluating forecasts. Some examples of
target data are given in Section 4.

3.2 | Ensemble Functions in hubEnsembles

The hubEnsembles package contains two functions that per-
form ensemble calculations: simple ensemble (), which
applies some function to each model prediction, and lin-
ear_pool (), which computes an ensemble using the linear
opinion pool method. In the following sections, we outline
the implementation details for each function and how these
implementations correspond to the statistical ensembling meth-
ods described in Section 2. A short description of the calcu-
lation performed by each function is summarized by output
type in Table 3.
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TABLE2 | A table summarizing how the model output representation columns are used for predictions of different output types; adapted from

hubverse documentation [30].

output_ type output_ type id value

mean NA (not used for mean predictions) Numeric: The mean of the predictive distribution

median NA (not used for median predictions) Numeric: The median of the predictive distribution

quantile Numeric between 0.0 and 1.0: A quantile level Numeric: The quantile of the predictive distribution at the quantile

level specified by the output_type id

cdf String or numeric naming a possible value of the target Numeric between 0.0 and 1.0: The cumulative probability of the

variable predictive distribution at the value of the outcome variable
specified by the output_type id

pmf String naming a possible category of a discrete outcome Numeric between 0.0 and 1.0: The probability mass of the

variable predictive distribution when evaluated at a specified level of a
categorical outcome variable
sample Integer or string identifying the sample® Numeric: A single sample value from the predictive distribution

2Rows of sample predictions from a particular model that share an output type ID value may be assumed to represent a single sample from a joint distribution across multiple levels of the task ID

variables.

BOX2 | Keywords and definitions: Terminology from the
hubverse.

» Modeling Task: a definition of the goals of a modeling
effort, possibly including conditions, assumptions, and
targets (collectively known as task ID variables). Some
tasks may be fixed across rounds, such as for forecast hubs
that regularly solicit predictions for a set time horizon in
the near-term future. Other tasks may be more variable;
for example, those in scenario hubs that model hypothet-
ical futures with different assumptions for different mod-
eling rounds.

+ Compound modeling task: a single, modeled unit with a
multivariate outcome of interest, such as an epidemic tra-
jectory across multiple weeks

» Model output: a dataset containing predictions of mod-
eling tasks in tabular format generated in response to
some modeling task for a specific round. A model might
result from a single team’s response to the task or from an
ensemble of results representing the outcomes of multiple
efforts.

« Output type: a classification of model output that is sup-
ported by the hubverse (i.e., the types of predictions that
can be processed). See Table 2 for definitions of each.

» Round: a time period for which a set of specific model out-
puts is solicited. Rounds define the “cadence” of submis-
sion for a modeling hub. For example, some hubs might
accept daily submissions, where each day is considered a
different round. Other hubs might have one round every
month, with a submission period that may be open for
multiple days.

« Task ID variables: a collection of conditions, assumptions,
and potentially targets that are used to parameterize a
model task. These represent columns in the model out-
put. A more detailed explanation of task ID variables can
be found in the documentation.

+ Target: an outcome of interest for a modeling hub (e.g.,
“incident case counts”). Targets typically (and sometimes
implicitly) refer to a value of an observable variable in a
given window of time, a given location, and possibly other
stratifications (such as age group).

3.21 | Simple Ensemble

The simple ensemble () function directly computes an
ensemble from component model outputs by combining them via
an aggregation function (C) within each unique combination of
task ID variables, output types, and output type IDs. This func-
tion can be used to summarize predictions of output types mean,
median, quantile, CDF, and PMF. Samples must be converted to
a different output type (e.g., summarized into a CDF) in order
to be ensembled using this function, as there is no meaningful
equivalent for individual predictive draws. The mechanics of the
ensemble calculations are the same for each of the output types,
though the resulting statistical ensembling method differs for dif-
ferent output types (Table 3).

By default, simple ensemble () uses the mean for the aggre-
gation function C and equal weights for all models. For point pre-
dictions with a mean or median output type, the resulting ensem-
ble prediction is an equally weighted average of the individual
models’ predictions. For probabilistic predictions in a quantile
format, by default simple ensemble () calculates an equally
weighted average of individual model target variable values at
each quantile level, which is equivalent to a quantile average.
For model outputs in a CDF or PMF format, by default sim-
ple ensemble () computes an equally weighted average of
individual model (cumulative or bin) probabilities at each target
variable value, which is equivalent to the linear pool method.

Any aggregation function C may be specified by the user. For
example, a median ensemble may also be created by specifying
median as the aggregation function, or a custom function may be
passed to the agg_fun argument to create other ensemble types.
Similarly, model weights can be specified to create a weighted
ensemble.

3.2.2 | Linear Pool

The linear pool () function implements the linear opinion
pool (LOP) method for ensembling predictions. This function
can be used to combine predictions with output types mean,
quantile, CDF, PMF, and sample. Since the LOP is an average of
probabilities, it does not support ensembles of medians. Unlike
simple ensemble (), this function handles its computation
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TABLE 3 | Summary of ensemble function calculations for each output type.

output_ type

simple ensemble(.., agg fun=mean)

linear pool ()

mean Mean of individual model means Mean of individual model means

median Mean of individual model medians NA

quantile Mean of individual model target variable values at Quantiles of the distribution are obtained by computing

each quantile level, F, o 1) the mean of estimated individual model cumulative
probabilities at each target variable value, FL‘é (@)
cdf Mean of individual model cumulative probabilitiesat =~ Mean of individual model cumulative probabilities at
each target variable value, F;,p(x) each target variable value, F;,p(x)

pmf Mean of individual model bin or category Mean of individual model bin or category probabilities at
probabilities at each target variable value, f; ,p(x) each target variable value, f; p(x)

sample NA Samples of the distribution are obtained by stratified

draw from individual models’ samples

Note: The ensemble function determines the operation that is performed, and in the case of probabilistic output types (quantile, CDF, PMF), this also determines what
ensemble distribution is generated (quantile average, Fy 1(0), or linear pool, F,p(x)). The ensembled predictions are returned in the same output type as the inputs. Thus,
the output type determines how the resulting ensemble distribution is summarized (as a quantile, F (), cumulative probability, F(x), or probability f(x)). Estimating
individual model cumulative probabilities is required to compute a 1inear_pool () for predictions of quantile output type; see Section 3.2.2 on the linear pool
operation for details. In the case of simple_ensemble (), we show the calculations for the default case where agg_fun = mean; however, if another aggregation
function is chosen (e.g., agg_fun = median), that calculation would be performed instead. For example, simple ensemble (.., agg fun = median) applied to

predictions of mean output type would return the median of individual model means.

differently based on the output type. For the CDF, PMF, and
mean output types, the linear pool method is equivalent to call-
ing simple ensemble () with a mean aggregation function
(see Table 3), since simple ensemble () produces a linear
pool prediction (an average of individual model cumulative or bin
probabilities).

3.2.2.1 | Linear Pool of samples. For the sample output
type, the LOP method collects a stratified draw of the individ-
ual models’ predictions and pools them into a single ensemble
distribution. By default, all samples are used to create this ensem-
ble. Additionally, only equally-weighted linear pools of samples
are supported by the hubEnsembles package during this time.
Samples may also be converted to another common output type
such as quantiles or bin probabilities (as the main scientific inter-
est often concerns a summary of samples), and other ensemble
methods may then be utilized for that output type.

When requesting a subsetted ensemble of samples, it becomes
important to distinguish between marginal and joint predictive
distributions so that the dependence structure can be passed to
linear pool (). We introduce the concepts of the compound
task ID set and derived task ID variables here, as they help iden-
tify the underpinnings the dependence structure of the ensem-
bled predictive distributions.

As stated in the previous section, the sample output type is unique
in that it can represent predictions from both marginal distribu-
tions and joint distributions. Hence, samples can encode depen-
dence across combinations of multiple values for task ID vari-
ables, for example, across multiple locations and/or time points.
In this case, sample predictions with the same index (output type
ID) from a given model may be assumed to correspond to a single
trajectory.

The compound task id set consists of independent task id vari-
ables that, together, identify a “compound modeling task” corre-
sponding to a single, modeled unit with a multivariate outcome of

interest. Samples summarizing a marginal distribution will gen-
erally have a compound task ID set composed of all the task ID
variables (except for derived task IDs). Conversely, samples sum-
marizing a joint distribution will have a compound task ID set
only containing task ID variables for which the joint distribution
does not capture dependencies. For example, if a joint distribu-
tion is estimated across multiple forecast horizons separately for
each location (i.e., horizon-based trajectories), the task ID “loca-
tion” would be included in the compound task ID set but “hori-
zon” would not.

Derived task IDs are another subgroup of task ID variables that
must be specified in a call to 1inear pool () for a subsetted
sample ensemble; their values are derived from a combination of
the values from other task ID variables (which may or may not
be part of the compound task ID set). A common example of a
derived task ID variable is the target date for a prediction, which
is a deterministic function of the reference date of the prediction
and the prediction horizon. Generally, the derived task IDs won’t
be included in the compound task ID set because they are not
needed to identify a single modeled unit for an outcome of inter-
est, unless all of the task ID variables their values depend on are
already a part of the compound task ID set.

Not all model outputs will contain derived task IDs, in which case
the argument may be set to NULL (the default value). However,
it is important to provide the l1inear pool () function with
any derived task IDs when calculating an ensemble of (subsetted)
samples, as they are used to check that the provided compound
task ID set is compatible with the input predictions and the result-
ing LOP is valid.

3.2.2.2 | Linear Pool of quantiles. For the quantile output
type, calculation of LOP requires a few extra steps. This is because
LOP averages cumulative probabilities at each value of the target
variable, but the predictions are given as quantiles (on the scale
of the target variable) for fixed quantile levels. The value for these
quantile predictions will generally differ between models; hence,
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we are typically not provided cumulative probabilities at the same
values of the target variable for all component predictions. This
lack of alignment between cumulative probabilities for the same
target variable values impedes computation of LOP from quantile
predictions and is illustrated in panel A of Figure 2.

Given that LOP cannot be directly calculated from quantile pre-
dictions, we must first obtain an estimate of the CDF for each
component distribution from the provided quantiles, combine
the CDFs, then calculate the quantiles using the ensemble’s CDF.
‘We perform this calculation in three main steps, assisted by the
distfromqg package [48] for the first two:

1. Interpolate and extrapolate from the provided quantiles for
each component model to obtain an estimate of the CDF of
that particular distribution.

2. Draw samples from each component model distribution. To
reduce Monte Carlo variability, we use quasi-random sam-
ples corresponding to quantiles of the estimated distribution
[49].

3. Pool the samples from all component models and extract the
desired quantiles.

For step 1, functionality in the di st £ romg package uses a mono-
tonic cubic spline for interpolation on the interior of the provided
quantiles. The user may choose one of several distributions to
perform extrapolation of the CDF tails. These include normal,
lognormal, and Cauchy distributions, with “normal” set as the
default. A location-scale parameterization is used, with separate
location and scale parameters chosen in the lower and upper tails
so as to match the two most extreme quantiles. The sampling
process described in steps 2 and 3 approximates the linear pool
calculation described in Section 2.

4 | A Simple Demonstration of Multi-Model
Ensembles

In this section, we provide a simple example to illustrate how
to compute a multi-model ensemble and compare the methods

supported by the functions of hubEnsembles. In doing so, we
use a number of other packages available through the hubverse,
including to access example data and to visualize outputs. See the
Data Availability Statement for details about implementation and
required package versions.

4.1 | Example Data: A Forecast Hub

The first step in generating a multi-model ensemble is to gather
the predictions we wish to combine. In this example, we use some
short-term forecasts already formatted as model output data from
the hubExamples package. These model outputs are from a
larger example modeling hub, created using a modified subset of
predictions from the FluSight Forecasting challenge (discussed in
further detail in Section 5). In addition to toy model output data,
the example hub also includes observed data in the form of target
time series data and oracle output.

The model output is stored in a data object named fore-
cast_outputs and contains mean, median, quantile, and sam-
ple forecasts of future incident influenza hospitalizations, as well
as CDF and PMF forecasts of hospitalization intensity. Each pre-
diction is described by five task ID variables: the location for
which the forecast was made (Location), the date on which
the forecast was made (reference_date), the number of steps
ahead (horizon), the date of the forecast prediction (tar-
get_end date, a combination of the date the forecast was
made and the forecast horizon), and the forecast target (tar-
get). We begin by examining the predictions for weekly incident
influenza hospitalizations, displaying a subset of each output type
in Table 4.

While the hubExamples package provides both formats of
target data, we focus on the target time series data (Table 5)
which is convenient for making forecasts and plotting. The
forecast target ts data object provides observed val-
ues for weekly incident influenza hospitalizations and weekly
rate change of influenza hospitalizations in a given week

TABLE4 | Example model output for forecasts of weekly incident influenza hospitalizations.
model id target horizon output type output type id value
Flusight-baseline wk inc flu hosp 1 mean NA 582.07
Flusight-baseline wk inc flu hosp 1 median NA 582.00
Flusight-baseline wk inc flu hosp 1 quantile 0.05 496.00
Flusight-baseline wk inc flu hosp 1 quantile 0.25 566.00
Flusight-baseline wk inc flu hosp 1 quantile 0.75 598.00
Flusight-baseline wk inc flu hosp 1 quantile 0.95 668.00
Flusight-baseline wk inc flu hosp 1 sample 2101 606.00
Flusight-baseline wk inc flu hosp 1 sample 2102 576.00
Flusight-baseline wk inc flu hosp 1 sample 2103 578.00
MOBS-GLEAM_FLUH wk inc flu hosp 1 mean NA 704.73
MOBS-GLEAM_FLUH wk inc flu hosp 1 median NA 664.00
MOBS-GLEAM_FLUH wk inc flu hosp 1 quantile 0.05 446.00

Note: A subset of example model output is shown: 1-week ahead forecasts made on 2022-12-17 for Massachusetts from three distinct models; only the mean, median, select
samples, and the 5th, 25th, 75th, and 95th quantiles are displayed. The location, reference_date and target_end_date columns have been omitted for brevity.

This example data is provided in the hubExamples package.
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TABLE 5 | Example target time series data for incident influenza hos-
pitalizations and (weekly) influenza hospitalization rate change.

target_end date target location observation
2022-11-05 wk inc flu hosp 25 31.000
2022-11-12 wk inc flu hosp 25 43.000
2022-11-19 wk inc flu hosp 25 79.000
2022-11-26 wk inc flu hosp 25 221.000
2022-12-03 wk inc flu hosp 25 446.000
2022-12-10 wk inc flu hosp 25 578.000
2022-12-17 wk inc flu hosp 25 694.000
2022-12-24 wk inc flu hosp 25 769.000
2022-12-31 wk inc flu hosp 25 733.000
2023-01-07 wk inc flu hosp 25 466.000
2023-01-14 wk inc flu hosp 25 238.000
2023-01-21 wk inc flu hosp 25 122.000
2023-01-28 wk inc flu hosp 25 71.000
2022-11-05 wk flu hosp rate 25 0.444
2022-11-12 wk flu hosp rate 25 0.616
2022-11-19 wk flu hosp rate 25 1.132
2022-11-26 wk flu hosp rate 25 3.167
2022-12-03 wk flu hosp rate 25 6.391
2022-12-10 wk flu hosp rate 25 8.282
2022-12-17 wk flu hosp rate 25 9.945
2022-12-24 wk flu hosp rate 25 11.019
2022-12-31 wk flu hosp rate 25 10.503
2023-01-07 wk flu hosp rate 25 6.677
2023-01-14 wk flu hosp rate 25 3.410
2023-01-21 wk flu hosp rate 25 1.748
2023-01-28 wk flu hosp rate 25 1.017

Note: We round the latter target’s observed values (in the observation column) to three digits
for readability. This table displays target time series data for Massachusetts (FIPS code 25)
between 2022-11-01 and 2023-02-01. The target data is provided in the hubExamples package.

for a particular location using columns observation,
target end date, location, and target. The
forecast-specific task ID variables reference_date and
horizon are not relevant for this time series representation of
the target data, and are thus not included as columns.

We can plot the quantile and median forecasts and the
target time series data (Figure 3) shown above using the
plot step ahead model output () function from hub-
Vis, another package in the hubverse suite for visualizing model
outputs. We subset the model output data and the target data to
the target, location, and time horizons we are interested in.

> model_outputs_plot <- hubExamples::forecast_outputs |[>

hubVis: :plot_step_ahead model_output (
model out tbl = model outputs plot,
target_data = target_data_plot,
facet = "model id",
facet_nrow = 1,
interactive = FALSE,
intervals = c¢(0.5, 0.9),
show_legend = FALSE,
use_median as_point = TRUE,
X_target_col_name = "target_end date",
X _col_name = "target end date"

+
theme bw() +
labs(y = "incident hospitalizations")

++ + 4+ 4+ +++ A+ ++ VoV

Some hubs request modeling teams submit samples instead of,
or in addition to, predicted distributions (Figure 4). Samples can
be useful for capturing additional correlations across targets that
are difficult to represent when predictions are summarized using
quantile or CDF output types. In this example, separate proba-
bilistic predictions of incident influenza hospitalizations in each
week cannot capture the shape of possible epidemic trajectories,
but multivariate samples for the trajectory of disease incidence
across weeks can. We filter to the sample output type and plot.
These samples are representative draws from the distributions
plotted in Figure 3.

Next, we examine the PMF forecasts for hospitalization inten-
sity in the example model output data. For this target, teams
forecasted the probability that hospitalization intensity will be
“low”, “moderate”, “high”, or “very high”. These four categories
are determined by thresholds for weekly hospital admissions
per 100,000 population. In other words, “low” hospitalization
intensity in a given week means few incident influenza hospi-
talizations per 100,000 population are predicted, whereas “very
high” hospitalization intensity means many hospitalizations per
100,000 population are predicted. These forecasts are made for
the same task ID variables as the quant i 1e forecasts of incident
hospitalizations except for the target, which is “wk flu hosp rate
category” for these categorical predictions.

We show a representative example of the hospitalization inten-
sity category forecasts in Table 6. Because these forecasts are
PMF output type, the output_type id column specifies the
bin of hospitalization intensity and the value column pro-
vides the forecasted probability of hospitalization incidence
being in that category. Values sum to 1 across bins. For the
MOBS-GLEAM_FLUH and PSI-DICE models, incidence is fore-
casted to decrease over the horizon (Figure 3), and correspond-
ingly, there is lower probability of “high” and “very high” hospi-
talization intensity for later horizons (Figure 5).

4.2 | Creating Ensembles With
simple ensemble ()

Using the default options for simple ensemble (), we can
generate an equally weighted mean ensemble for each unique
combination of values for the task ID variables, the out-
put_typeandtheoutput_ type id.Recall thatthisfunction
corresponds to different statistical ensemble methods for differ-
ent output types: for the quantile output type in our example
data, the resulting ensemble is a quantile average, while for
the CDF and PMF output types, the ensemble is a linear pool
(Table 3).

+ hubUtils::as model out tbl() |>

+ dplyr::filter(

+ location == "25",

+ output_type %in% c("median", "quantile"),

+ reference_date == "2022-12-17"

+ ) >

+ dplyr::mutate (output_type_id = as.double (output_type id))
> target data plot <- hubExamples::forecast target ts |>
+ dplyr::filter(

+ target == "wk inc flu hosp",

+ location == "25",

+ target_end date >= "2022-11-01", target_end date <=

"2023-03-01"

+ )
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FIGURE3 | Oneexample set of quantile forecasts for weekly incident influenza hospitalizations in Massachusetts from each of three models (pan-

els). Forecasts are represented by a median (line), 50% and 90% prediction intervals (ribbons). Gray points represent observed incident hospitalizations.
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FIGURE4 | Oneexample setofsample forecasts for weekly incident influenza hospitalizations in Massachusetts from each of three models (panels).

Each sample is represented by a single line. Gray points represent observed incident hospitalizations.

TABLE 6 | Example PMF model output for forecasts of incident influenza hospitalization intensity.
model id target horizon output type output type id value
Flusight-baseline wk flu hosp rate category 1 pmf low 0.000
Flusight-baseline wk flu hosp rate category 1 pmf moderate 0.003
Flusight-baseline wk flu hosp rate category 1 pmf high 0.073
Flusight-baseline wk flu hosp rate category 1 pmf very high 0.924
MOBS-GLEAM_FLUH wk flu hosp rate category 1 pmf low 0.000
MOBS-GLEAM_FLUH wk flu hosp rate category 1 pmf moderate 0.002
MOBS-GLEAM_FLUH wk flu hosp rate category 1 pmf high 0.163
MOBS-GLEAM_FLUH wk flu hosp rate category 1 pmf very high 0.835
PSI-DICE wk flu hosp rate category 1 pmf low 0.013
PSI-DICE wk flu hosp rate category 1 pmf moderate 0.065
PSI-DICE wk flu hosp rate category 1 pmf high 0.218
PSI-DICE wk flu hosp rate category 1 pmf very high 0.704

Note: A subset of predictions are shown: 1-week ahead PMF forecasts made on 2022-12-17 for Massachusetts from three distinct models. We round the forecasted
probability (in the value column) to two digits. The location, reference date and target end date columns have been omitted for brevity. This example data
is provided in the hubExamples package.
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FIGURE5 | Oneexample PMF forecast of incident influenza hospitalization intensity is shown for each of three models (panels). Each cell shows

the forecasted probability of a given hospitalization intensity bin (low, moderate, high, and very high) for each forecast horizon (0-3 weeks ahead).

Darker colors indicate higher forecasted probability.

> mean_ens <- hubExamples::forecast outputs |>

+ dplyr::filter (output type != "sample") |>
+ hubEnsembles: :simple ensemble (

+ model id = "simple-ensemble-mean"

F )

The resulting model output has the same structure as the orig-
inal model output data (Table 7), with columns for model ID,
task ID variables, output type, output type ID, and value. We also
usemodel id = “simple-ensemble-mean” tochangethe
name of this ensemble in the resulting model output; if not spec-
ified, the default is “hub-ensemble”.

421 | Changing the Aggregation Function

We can change the function that is used to aggregate model out-
puts. For example, we may want to calculate a median of the
component models’ submitted values for each quantile. We do so
by specifying agg_fun = median.

> median ens <- hubExamples::forecast outputs |>
+ dplyr::filter (output type != "sample") |>

+ hubEnsembles: :simple ensemble (

+ agg fun = median,

+ model id = "simple-ensemble-median"

+

)

Custom functions can also be passed into the agg fun argu-
ment. We illustrate this by defining a custom function to com-
pute the ensemble prediction as a geometric mean of the com-
ponent model predictions. Any custom function to be used
must have an argument x for the vector of numeric values
to summarize, and if relevant, an argument w of numeric
weights.

> geometric _mean <- function(x) {
+ n <- length(x)
prod(x)”* (1 / n)
1
geometric mean ens <- hubExamples::forecast outputs |>
dplyr::filter (output type != "sample") |[>
hubEnsembles: :simple ensemble (
agg_fun = geometric_mean,
model id = "simple-ensemble-geometric"

)

+ 4+ 4+ + + vV + +

As expected, the mean, median, and geometric mean each give
us slightly different resulting ensembles. The median point esti-
mates, 50% prediction intervals, and 90% prediction intervals in
Figure 6 demonstrate this.

4.2.2 | Weighting Model Contributions

We can weight the contributions of each model in the ensem-
ble using the weights argument of simple ensemble ().
This argument takes a data.frame that should include a
model id column containing each unique model ID and a
weight column. In the following example, we include the base-
line model in the ensemble, but give it less weight than the other
forecasts.

> model weights <- data.frame(
+ model id = c("MOBS-GLEAM_FLUH", "PSI-DICE",
"Flusight-baseline"),

+ weight = c(0.4, 0.4, 0.2)

+ )

> weighted_mean_ens <- hubExamples::forecast_outputs |>
+ dplyr::filter (output type != "sample") |>

+ hubEnsembles: :simple_ensemble (

+ weights = model weights,

+ model id = "simple-ensemble-weighted-mean"

+ )
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TABLE7 | Mean ensemble model output.
model id target horizon output type output type id value
simple-ensemble-mean wk flu hosp rate category 1 pmf high 0.15
simple-ensemble-mean wk flu hosp rate category 1 pmf low 0.00
simple-ensemble-mean wk flu hosp rate category 1 pmf moderate 0.02
simple-ensemble-mean wk flu hosp rate category 1 pmf very high 0.82
simple-ensemble-mean wk inc flu hosp 1 mean NA 627.09
simple-ensemble-mean wk inc flu hosp 1 median NA 619.67
simple-ensemble-mean wk inc flu hosp 1 quantile 0.25 541.67
simple-ensemble-mean wk inc flu hosp 1 quantile 0.75 704.33

Note: The values in the model_id column are set by the argument simple_ensemble (.., model id).Results are generated for all output types, but only a subset are

shown: 1-week ahead forecasts made on 2022-12-17 for Massachusetts, with only the mean, median, 25th and 75th quantilesfor the quantile output type and all bins for the
PMF output type. The location, reference_date and target_end_date columns have been omitted for brevity, and the value column is rounded to two digits.
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FIGURE6 |

Feb Mar

Three different ensembles for weekly incident influenza hospitalizations in Massachusetts. Each ensemble combines individual pre-

dictions from the example hub (Figure 3) using a different method: arithmetic mean, geometric mean, or median. All methods correspond to variations

of the quantile average approach. Ensembles are represented by a median (line), 50% and 90% prediction intervals (ribbons). Geometric mean ensemble

and simple mean ensemble generate similar estimates in this case.

43 | Creating Ensembles With
linear pool ()

We can also generate a linear pool ensemble, or distributional
mixture, using the 1inear pool () function; this function can
be applied to predictions with an output_type of mean, quan-
tile, sample, CDF, or PMF. Our example hub includes the median
output type, so we exclude it from the calculation.

> linear pool_ens <- hubExamples::forecast_outputs |>
+ dplyr::filter (output_type != "median") |>
+ hubEnsembles: :1linear pool (model id = "linear-pool")

As described above, for quantile model outputs, the 1in-
ear_pool function approximates the full probability distribu-
tion for each component prediction using the value-quantile pairs
provided by that model, and then obtains quasi-random samples
from that distributional estimate. The number of samples drawn
from the distribution of each component model defaults to 1e4,
but this can be changed using then_samples argument.

In Figure 7, we compare ensemble results generated by sim-
ple ensemble () and linear pool () for model outputs of
output types PMF and quantile. As expected, the results from
the two functions are equivalent for the PMF output type: for
this output type, the simple ensemble () method averages
the predicted probability of each category across the compo-
nent models, which is the definition of the linear pool ensem-
ble method. This is not the case for the quantile output type,
because the simple ensemble () is computing a quantile
average.

43.1 | Weighting Model Contributions

Like with simple ensemble (), we can change the default
function settings. For example, weights that determine a
model’s contribution to the resulting ensemble may be
provided. (Note that we must exclude the sample output
type here because it cannot yet be combined into weighted
ensembles.)
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A example PMF output type
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FIGURE7 | Comparison of results from linear pool () (blue) and simple ensemble () (red). (Panel A) Ensemble predictions of Mas-

sachusetts incident influenza hospitalization intensity (classified as low, moderate, high, or very high), which provide an example of PMF output type.

(Panel B) Ensemble predictions of weekly incident influenza hospitalizations in Massachusetts, which provide an example of quantile output type. Note,

for quantile output type, simple ensemble () corresponds to a quantile average. Ensembles combine individual models from the example hub, and

are represented by a median (line), 50% and 90% prediction intervals (ribbons) (Figure 3).

> weighted_linear pool_norm <- hubExamples::forecast_outputs
‘ >

+ dplyr::filter (!loutput_type %in% c("median", "sample"))
‘ >

+ hubEnsembles: : 1inear_pool (

+ weights = model weights,

+ model id = "linear-pool-weighted"

+ )

43.2 | Changing the Parametric Family Used
for Extrapolation Into Distribution Tails

When requesting a linear pool of quantiles, we may also change
the distribution that distfromg uses to approximate the tails
of component models’ predictive distributions to either log nor-
mal or Cauchy using the tail dist argument (the default is
normal) [48]. This choice usually does not have a large impact
on the resulting ensemble distribution, though, and can only
be seen in its outer edges. (For more details and other function
options, see the documentation in the distfromg package at
https://reichlab.io/distfromq/.)

> linear_pool_lnorm <- hubExamples::forecast_outputs |>

+ dplyr::filter (output_type == "quantile") |[>
+ hubEnsembles: :linear pool (

+ model id = "linear-pool-lognormal",

+ tail dist = "lnorm"

+ )

> linear pool cauchy <- hubExamples::forecast outputs |>
+ dplyr::filter (output type == "quantile") |>
+ hubEnsembles: :linear pool (

+ model id = "linear-pool-cauchy",

+ tail dist = "cauchy"

+ )

4.3.3 | Requesting a Subset of Input Sample

Predictions to be Ensembled

Recall that for the sample output type, linear pool () sim-
ply collects and pools the input sample predictions into a single
distribution. By default, the resulting ensemble model output

contains all provided sample predictions so that the total number
of samples for the ensemble is equal to the sum of the number of
samples from all individual models.

> joint 1lp default <- hubExamples::forecast outputs |>
dplyr::filter (output_type == "sample") |>
hubEnsembles: :linear pool (
weights = NULL,
model id = "linear-pool-joint-subset™",
task id cols =
c("reference_date",
"target",
"target end date")
+ )

+ o+ + + o+ o+

"location", "horizon",

To change this behavior, the user may instead specify a num-
ber of sample predictions for the ensemble to return using the
n_output_ samples argument. Then, a random subset of pre-
dictions from individual models will be selected to construct a
LOP of samples so that all component models are represented
equally. This random selection of samples is stratified by model
to ensure approximately the same number of samples from each
individual model is included in the ensemble.

The compound task ID set and any derived task IDs must also
be specified to ensure the function returns a valid ensemble. For
example, one compound task we are predicting for in the model
output is the number of weekly incident influenza hospitaliza-
tions (“target”) in Massachusetts (“location”) starting on Decem-
ber 5, 2022 (“reference_date”). Here, “horizon” is not part of the
compound task ID set, indicating that sample predictions made
at each horizon depend on those for the other horizons within
every compound task for the sample output type. Each sample
can therefore be interpreted as a trajectory giving a possible path
of hospitalizations over time. These three task id variables (“ref-
erence_date”, “location”, and “target”) make up the compound
task ID set that is specified in the call to 1inear pool (). The
remaining task ID variable “target_end_date” is a derived task ID
since its value is a function of “reference_date” and “horizon”.
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> joint lp subset <- hubExamples::forecast outputs |>
+ dplyr::filter (output_type == "sample") |>
+ hubEnsembles: :linear pool (
+ weights = NULL,
+ model_id = "linear-pool-joint-subset",
+ task _id cols =
+ c("reference_date",
"target",
"target end date"),
+ compound_taskid set = c("reference_date",
"location",
"target"),
+ derived task ids
T n_output_samples
+ )

"location", "horizon",

"target end date",
100

5 | Example: In-Depth Analysis of Forecast
Data

To further demonstrate the differences between the two ensem-
ble functions and the utility of the hubEnsembles pack-
age, we provide a more complex example that walks through
the full process of generating multi-model ensembles. This
case study gathers real forecasts collected by a modeling
hub to create four equally-weighted ensembles, then evalu-
ates their performance to determine the best approach for the
application.

The predictions we use to create the ensemble models are sourced
from two seasons of the FluSight forecasting challenge. Since
2013, the US Centers for Disease Control and Prevention (CDC)
has been soliciting short-term forecasts of seasonal influenza
from modeling teams through this collaborative challenge [50].
Using simple ensemble () and linear pool (), we build
four equally-weighted, multi-model ensembles to predict weekly
influenza hospitalizations: a quantile (arithmetic) mean, a quan-
tile median, a linear pool with normal tails, and a linear
pool with lognormal tails. Then, we compare the resulting
ensembles’ performance through plotting and scoring their
forecasts.

Only a select portion of the code used in this analysis is
shown for brevity, but all the functions and scripts used
to generate the case study results can be found in the
associated GitHub repository (https://github.com/hubverse-org/
hubEnsemblesManuscript). In particular, the figures and tables
supporting this analysis can be reproduced using data from . rds
files stored in the analysis/data/raw-data directory and
scripts in the inst directory of the repository.

5.1 | Dataand Methods

We collect the predictions used to generate the four ensembles
by querying them from Zoltar [51], a repository designed to
archive forecasts created by the Reich Lab at UMass Amherst.
For this analysis we only consider FluSight forecasts in a quan-
tile format from the 2021-2022 and 2022-2023 influenza sea-
sons. These quantile forecasts are stored in two data objects,
split by season, called f1u_forecasts-zoltar 21-22.rds
and flu_ forecasts-zoltar 22-23.rds, which are then
joined together into a single data frame. A subset is shown below
in Table 8.

> flu forecasts_raw 21 22 <- readr::read rds(

+ here: :here("analysis/data/raw data/flu forecasts-
zoltar_21-22.rds")

+ )

> flu forecasts_raw_22 23 <- readr::read_rds(

+ here: :here("analysis/data/raw data/flu forecasts-
zoltar 22-23.rds")

+ )

> flu forecasts_raw <- rbind(flu_forecasts_raw_21_22,

flu forecasts_raw 22 23)

Although these forecasts are in a tabular format, they are
not model out_ tbl objects and thus cannot yet be fed into
either of the hubEnsembles functions. Thus, we must use the
as_model out tbl()! function from hubUtils to trans-
form the raw forecasts so that they conform to hubverse stan-
dards. Below, we specify the appropriate column mappings in the
call with task ID variables of forecast_date (when the fore-
cast was made), location, horizon, and target.

> flu_forecasts_hubverse <- flu_forecasts_raw |>

+ dplyr::rename (forecast_date = timezero, location =
unit) |>
+ tidyr::separate(target, sep = " ", convert = TRUE,
. into = c("horizon", "target"),
extra ="merge")

‘ >
+ dplyr::mutate (target end date =
+ round_date (forecast_date + weeks (horizon),
"weeks") -
days (1)) |>
as_model out_tbl (
model id col = "model",
output_ type col = "class",
output type id col = "quantile",
value col = "value",
sep = "-",
trim_to_task ids = FALSE,
hub_con = NULL,
task_id _cols =
c("forecast_date", "location", "horizon", "target"
target_end date),
remove empty = TRUE

4+ o+ o+ o+

+

+ )

To ensure the quantile mean and median ensemble had con-
sistent component forecast make-up at every quantile level, we
only included predictions (defined by a unique combination of
task ID variables) that contained all 23 quantiles specified by
FluSight (6 € {.010,0.025,.050,.100, ...,.900,.950,.990}). This
requirement required no further action on our part, since it
was consistent with FluSight submission guidelines. However,
we did remove the baseline and median ensemble models gen-
erated by the FluSight hub from the component forecasts, a
choice motivated by the desire to match the composition of
models in the official FluSight ensemble. (Note, though, that
the component models included in our ensembles did not
always exactly match those included in the FluSight-ensemble
for every forecast week as a result of slightly different inclusion
criteria.)

With these inclusion criteria, the final data set of component
forecasts consists of predictions from 25 modeling teams and 42
distinct models, 53 forecast dates (one per week), 54 US loca-
tions, 4 horizons, 1 target, and 23 quantiles. In the 2021-2022
season, 25 models made predictions for 22 weeks spanning from
late January 2022 to late June 2022, and in the 2022-2023 season,
there were 31 models making predictions for 31 weeks spanning
mid-October 2022 to mid-May 2023. Fourteen of the 42 total mod-
els made forecasts for both seasons. Locations consist of the 50 US
states, Washington DC, Puerto Rico, the Virgin Islands, and the
entire US; horizons 1 to 4 weeks ahead, quantiles the 23 described
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TABLE 8 | Anexample prediction of weekly incident influenza hospitalizations pulled directly from Zoltar.
model target class value cat ©prob sample quantile family
UMass-trends_ensemble 1wk ahead inc flu hosp  quantile 12 NA NA NA 0.025 NA
UMass-trends_ensemble 1wk ahead inc flu hosp  quantile 17 NA NA NA 0.100 NA
UMass-trends_ensemble 1wk ahead inc flu hosp  quantile 25 NA NA NA 0.250 NA
UMass-trends_ensemble 1wk ahead inc flu hosp  quantile 46 NA NA NA 0.750 NA
UMass-trends_ensemble 1wk ahead inc flu hosp  quantile 56 NA NA NA 0.900 NA
UMass-trends_ensemble 1wk ahead inc flu hosp  quantile 68 NA NA NA 0.975 NA

Note: The example forecasts were made on May 15, 2023 for California at the 1 week ahead horizon. The forecasts were generated during the FluSight forecasting challenge,
then formatted according to Zoltar standards for storage. The timezero, season, unit, paraml, param2, and param3 columns have been omitted for brevity (The
season column has a value of “2021-2022” or “2022-2023” while the last three “param” columns always have a value of NA).

TABLE9 | Anexample prediction of weekly incident influenza hospitalizations.
model id target horizon output type output type id value
UMass-trends_ensemble wk ahead inc flu hosp 1 quantile 0.025 12
UMass-trends_ensemble wk ahead inc flu hosp 1 quantile 0.100 17
UMass-trends_ensemble wk ahead inc flu hosp 1 quantile 0.250 25
UMass-trends_ensemble wk ahead inc flu hosp 1 quantile 0.750 46
UMass-trends_ensemble wk ahead inc flu hosp 1 quantile 0.900 56
UMass-trends_ensemble wk ahead inc flu hosp 1 quantile 0.975 68

Note: The example model output was made on May 15, 2023 for California at the 1 week ahead horizon. The forecast was generated during the FluSight forecasting
challenge, then formatted according to hubverse standards post hoc. The location, forecast date, and season columns have been omitted for brevity; quantiles
representing the endpoints of the central 50%, 80% and 95% prediction intervals are shown.

above, and target week ahead incident influenza hospitalization.
The values for the forecasts are always non-negative. In Table 9,
we provide an example of these predictions, showing select quan-
tiles from a single model, forecast date, horizon, and location.

Next, we can combine the predictions into a singlemodel out
tbl object used to generate forecasts for each ensemble method.
Then, we call the appropriate function in hubEnsembles to
generate predictions for each equally-weighted ensemble, storing
the results in four separate objects of model output data.

flu forecasts component <- dplyr::filter(
flu forecasts hubverse,
!model_id %in% c("Flusight-baseline",
"Flusight-ensemble")
)

mean _ensemble <- hubEnsembles::simple ensemble (
flu_forecasts_ component,
weights = NULL,
agg_fun = mean,
model id = "mean-ensemble"
)
median ensemble <- hubEnsembles::simple ensemble (
flu forecasts_component,
weights = NULL,
agg fun = median,
model id = "median-ensemble"
)
lp normal <- hubEnsembles::linear pool (
flu_forecasts_component,
weights = NULL,

lp_lognormal <- hubEnsembles::linear pool (
flu forecasts_component,
weights = NULL,

n_samples = 1les5,
model id = "lp-lognormal",
tail dist = "lnorm"

‘We then evaluate the performance of the ensembles using scoring
metrics that measure the accuracy and calibration of their fore-
casts. We chose several common metrics in forecast evaluation,
including mean absolute error (MAE), weighted interval score
(WIS) [52], 50% prediction interval (PI) coverage, and 95% PI cov-
erage. MAE measures the average absolute error of a set of point
forecasts; smaller values of MAE indicate better forecast accuracy.
WIS is a generalization of MAE for probabilistic forecasts and is
an alternative to other common proper scoring rules which can-
not be evaluated directly for quantile forecasts [52]. WIS is made
up of three component penalties: (1) for over-prediction, (2) for
under-prediction, and (3) for the spread of each interval (where
an interval is defined by a symmetric set of two quantiles). This
metric is a weighted sum of these penalties across all prediction
intervals provided. A lower WIS value indicates a more accurate
forecast [52]. PI coverage provides information about whether a
forecast has accurately characterized its uncertainty about future
observations. The 50% PI coverage rate measures the proportion
of the time that 50% prediction intervals at that nominal level
included the observed value; the 95% PI coverage rate is defined
similarly. Achieving approximately nominal (50% or 95%) cover-
age indicates a well-calibrated forecast.

We also use relative versions of WIS and MAE (rWIS and rMAE,
respectively) to understand how the ensemble performance

n _samples = 1le5,
model id = "lp-normal",
tail dist = "norm"
)
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TABLE 10 | Summary of overall model performance across both seasons, averaged over all locations except the US national location and sorted by

ascending WIS.
model wis rwis mae rmae cov50 cov95
CMU-TimeSeries 31.866 0.677 47.325 0.827 0.403 0.850
MOBS-GLEAM_FLUH 33.371 0.709 45.256 0.791 0.332 0.699
PSI-DICE 34.338 0.729 46.227 0.808 0.390 0.781
Ip-normal 34.393 0.730 52.359 0.915 0.574 0.960
Ip-lognormal 34.394 0.730 52.360 0.915 0.574 0.960
Median-ensemble 37.672 0.800 52.053 0.909 0.478 0.811
UMass-trends_ensemble 38.554 0.819 57.212 0.999 0.666 0.917
Mean-ensemble 39.480 0.838 54.615 0.954 0.461 0.779
SGroup-RandomForest 39.694 0.843 56.338 0.984 0.463 0.871
CU-ensemble 41.972 0.891 52.318 0.914 0.423 0.703
GT-FIuFNP 42.045 0.893 51.992 0.908 0.426 0.698
SigSci-TSENS 45.865 0.974 58.231 1.017 0.485 0.726
Flusight-baseline 47.095 1.000 57.244 1.000 0.499 0.776
UVAFluX-ensemble 57.242 1.215 68.383 1.195 0.208 0.448
SigSci-CREG 60.227 1.279 67.644 1.182 0.298 0.545

Note: Both the individual FluSight component models and the resulting ensembles are included in the table, as long as they forecasted for at least 80% of the two seasons.
The ensembles rank in the top half of models in terms of accuracy. The two linear pools have the best WIS and 95% coverage rates of the ensembles, as well as top

performance for MAE and 50% coverage rate.

compares to that of the FluSight baseline model. These metrics
are calculated as

WISmodel m
WISbaseline

MAEmodel m

WIS = — moddm
MAEbaseline

rMAE =

where model m is any given model being compared against the
baseline. For both of these metrics, a value less than one indi-
cates better performance compared to the baseline while a value
greater than one indicates worse performance. Because the base-
line model is designed to represent a naive prediction, relative
scores less than one indicate the model is outperforming a sim-
ple prediction that could be made in the absence of a model. By
definition, the FluSight baseline itself will always have a value of
one for both of these metrics.

Each unique prediction from an ensemble model is scored
against target data in the oracle output format using the
score_model out () function from the hubEvals package,
made for scoring hubverse model outputs with commonly used
evaluation metrics including those mentioned above. We use
median forecasts taken from the 0.5 quantile for the MAE evalu-
ation. Example code scoring the ensembles’ forecasts can be seen
below. We attach forecasts from the baseline model in order to
calculate the relative metrics.

flu baseline ensembles_scores <- flu baseline forecasts |>
rbind (flu_ensembles_forecasts) |>
hubEvals: :score model out (
flu oracle_output,

metrics = c("wis", "overprediction", "underprediction",
"dispersion", "bias",
"ae_median", "interval_coverage_ 50",
"interval coverage 95"),
relative metrics = c("wis", "ae median"),
baseline = "Flusight-baseline",

summarize = FALSE

)

5.2 | Performance Results Across Ensembles

The four ensembles rank in the top halfin terms of accuracy when
compared to the individual component models that made pre-
dictions for influenza hospitalizations (Table 10). The ranking of
the models differs slightly among the four scoring metrics; the
two linear opinion pools perform better than the other ensembles
in terms of WIS and 95% prediction interval coverage while the
quantile median has slightly better MAE and the best 50% cover-
age across ensembles. The quantile mean displayed the worst val-
ues for every metric out of the ensembles, particularly for MAE.

Plots of the ensemble models’ forecasts can aid our understand-
ing about the origin of these accuracy differences (Figure 8). For
example, the linear opinion pools consistently have some of the
widest prediction intervals, and consequently the highest cover-
age rates. The wider intervals provided by the LOP ensembles
yield the best 95% prediction interval coverage, however, this
also leads to 50% interval coverage that nearly always exceeded
the nominal level. Moreover, the linear pools demonstrate the
strongest WIS performance at both 1st and 4th week ahead hori-
zons during the 2022-2023 season (see Figure 9); this season
was especially difficult to forecast due to its unusual timing and
large peak. The wider prediction intervals prove useful in this
uncertain context when other models are overconfident in their
forecasts.

Although the LOP ensembles provide the best scores for WIS
and 95% PI coverage, they are not always the top ensemble
model. The quantile median ensemble tends to have slightly bet-
ter median (point) forecasts and mid-width intervals, including
the best MAE and 50% interval coverage of all of the ensembles.
While the quantile median ensemble is generally well calibrated
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Weekly Incident Hospitalizations for Influenza in California
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FIGURE S8 | One to four week ahead forecasts plotted against target data

for California. Each panel shows the baseline and four ensembles being

evaluated. All plots show the various models’ forecasts summarized by the median (line) and 50% and 95% prediction intervals (darker and lighter
ribbon, respectively), as compared to observed influenza hospitalizations (gray points and line). For simplicity, only predictions from select four-week

periods during the 2022-2023 influenza season are shown.

for most of the predictions evaluated, it fails to appropriately
capture uncertainty during the large peak of the 2022-2023 sea-
son which resulted in WIS values higher than that of the linear
opinion pools (Figure 9). The quantile mean’s interval widths
vary throughout both seasons. Although it usually has narrower
intervals than the linear pools, the quantile mean ensemble’s
median forecasts have a larger error margin compared to the
other ensembles, especially at longer horizons. This pattern is
demonstrated for the 4-week ahead forecast in California follow-
ing the 2022-2023 season peak on December 5, 2022 (Figure 8).
Here, the quantile mean predicted a continued increase in

hospitalizations, at a steeper slope than the other ensemble
methods.

All of the ensemble variations outperform the baseline model in
this analysis. The linear pool ensembles improve WIS by 27% over
baseline, the quantile median by 20% and the quantile mean by
16%. Such improvements come mostly from the ensembles pro-
viding better calibrated prediction intervals, as improvements in
point estimate accuracy improve over baseline by at most 9% (as
measured by rMAE). While the best model (CMU-TimeSeries)
improves WIS more (by 33%), ensembles are typically more
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FIGUREY9 | Weighted interval score (WIS) averaged across all locations. Average target data across all locations for 2021-2022 (A) and 2022-2023
(B) seasons for reference. For each season, average WIS is shown for 1-week (C,D) and 4-week ahead (E-F) forecasts. Results are plotted for each
ensemble model (colors) across the entire season. Lower values indicate better performance.

robust than individual models, and thus some decrease in overall
performance may be accepted in order to avoid extreme misses.

Linear pool ensemble methods are known to generate wider,
more conservative, prediction intervals than quantile averaging

methods. In this context, where influenza dynamics were
perturbed by the COVID-19 pandemic interventions, the wider
prediction intervals were suitable when making predictions for
an influenza season with an unusually large peak. However,
such wide intervals will likely be detrimental in other short-term
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forecasting contexts, including, for example, during the milder
season without any periods of rapid change (where the median
and mean quantile ensembles demonstrated more robust per-
formance). Expanding this evaluation to include other influenza
seasons will be important to characterize the robustness of these
conclusions and test how much the unusual timing and magni-
tude of the analyzed seasons affected forecast performance.

The choice of an appropriate ensemble aggregation method will
depend on the forecast target, the goal of forecasting, and the
behavior of the individual models contributing to an ensem-
ble. One case may call for prioritizing high coverage rates
while another may prioritize accurate point forecasts. The sim-
ple_ensemble () and linear pool () functions and the
ability to specify component model weights and an aggregation
function for simple ensemble () allow users to implement a
variety of ensemble methods.

6 | Summary and Discussion

Ensembles of independent models are a powerful tool to generate
more accurate and more reliable predictions of future outcomes
than those from a single model alone. Here, we have provided an
overview of multi-model ensemble methodology with the goal of
improving use of ensemble results in public health and biomedi-
cal research settings, as well as other domains that use probabilis-
tic forecasting. Moreover, we have demonstrated how to utilize
hubEnsembles, a simple and flexible framework to combine
individual model predictions into an ensemble.

Multi-model ensembles are becoming the gold standard for pre-
diction exercises in the public health domain. Collaborative mod-
eling hubs can serve as a centralized entity to guide and elicit pre-
dictions from multiple independent models, as well as to generate
and communicate ensemble results [12, 36]. Given the increas-
ing popularity of multi-model ensembles and collaborative hubs,
there is a clear need for generalized data standards and software
infrastructure to support these hubs. By addressing this need, the
hubverse suite of tools can reduce duplicative efforts across exist-
ing hubs, support other communities engaged in collaborative
efforts, and enable the adoption of multi-model approaches in
new domains.

When generating and interpreting an ensemble prediction, it is
important to understand the methods underlying the ensemble,
as methodological choices can have meaningful effects on the
resulting ensemble and its performance. Although there may
not be a universal “best” method, matching the properties of
a given ensemble method with the features of the component
models will likely yield best results [24]. Our case study on sea-
sonal influenza forecasts in the US demonstrates this point. The
two linear opinion pools with different distributional tails per-
formed best for many of the metrics we evaluated—weighted
interval score, mean absolute error, and prediction interval
coverage— particularly when outlying component forecasts were
important. Yet, the quantile averaging methods outperformed the
linear pools during periods of greater stability and less varia-
tion. All ensembles showed clear improvement over the baseline
model, demonstrating the accuracy gains from ensemble models
that motivate the use of a “hub-based” approach to prediction for
infectious diseases, public health, and in other fields.
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